我正在尝试将深度学习应用于目标类(500k,31K)之间的高级别不平衡的二进制分类问题。我想写一个自定义丢失函数,应该是这样的: 最小化(100 - ((predicted_smallerclass)/(total_smallerclass))* 100)
欣赏有关如何构建此逻辑的任何指示。
答案 0 :(得分:43)
You can add class weights to the loss function, by multiplying logits. Regular cross entropy loss is this:
loss(x, class) = -log(exp(x[class]) / (\sum_j exp(x[j])))
= -x[class] + log(\sum_j exp(x[j]))
in weighted case:
loss(x, class) = weights[class] * -x[class] + log(\sum_j exp(weights[class] * x[j]))
So by multiplying logits, you are re-scaling predictions of each class by its class weight.
For example:
ratio = 31.0 / (500.0 + 31.0)
class_weight = tf.constant([ratio, 1.0 - ratio])
logits = ... # shape [batch_size, 2]
weighted_logits = tf.mul(logits, class_weight) # shape [batch_size, 2]
xent = tf.nn.softmax_cross_entropy_with_logits(
weighted_logits, labels, name="xent_raw")
There is a standard losses function now that supports weights per batch:
tf.losses.sparse_softmax_cross_entropy(labels=label, logits=logits, weights=weights)
Where weights should be transformed from class weights to a weight per example (with shape [batch_size]). See documentation here.
答案 1 :(得分:40)
你提出的代码对我来说似乎不对。 我同意,损失应该乘以重量。
但是,如果将logit乘以类权重,则以:
结束weights[class] * -x[class] + log( \sum_j exp(x[j] * weights[class]) )
第二学期不等于:
weights[class] * log(\sum_j exp(x[j]))
为了表明这一点,我们可以将后者重写为:
log( (\sum_j exp(x[j]) ^ weights[class] )
所以这是我提议的代码:
ratio = 31.0 / (500.0 + 31.0)
class_weight = tf.constant([[ratio, 1.0 - ratio]])
logits = ... # shape [batch_size, 2]
weight_per_label = tf.transpose( tf.matmul(labels
, tf.transpose(class_weight)) ) #shape [1, batch_size]
# this is the weight for each datapoint, depending on its label
xent = tf.mul(weight_per_label
, tf.nn.softmax_cross_entropy_with_logits(logits, labels, name="xent_raw") #shape [1, batch_size]
loss = tf.reduce_mean(xent) #shape 1
答案 2 :(得分:11)
使用tf.nn.weighted_cross_entropy_with_logits()
并将pos_weight
设置为1 /(预期的积极比率)。
答案 3 :(得分:4)
您可以在tensorflow https://www.tensorflow.org/api_guides/python/contrib.losses
查看指南...
虽然指定标量损失会重新调整整个批次的损失,但我们有时希望重新调整每批样本的损失。例如,如果我们有一些对我们来说更重要的例子,我们可能希望有更高的损失,其他错误更重要的样本。在这种情况下,我们可以提供长度为batch_size的权重向量,这导致批次中的每个样本的损失由相应的权重元素缩放。例如,考虑一个分类问题的情况,我们希望最大限度地提高准确性,但我们特别希望获得特定类别的高精度:
inputs, labels = LoadData(batch_size=3)
logits = MyModelPredictions(inputs)
# Ensures that the loss for examples whose ground truth class is `3` is 5x
# higher than the loss for all other examples.
weight = tf.multiply(4, tf.cast(tf.equal(labels, 3), tf.float32)) + 1
onehot_labels = tf.one_hot(labels, num_classes=5)
tf.contrib.losses.softmax_cross_entropy(logits, onehot_labels, weight=weight)
答案 4 :(得分:3)
我不得不使用类似的不同类别的不平衡数据集,这就是我通过它的方式,希望它能帮助寻找类似解决方案的人:
这包含在您的培训模块中:
from sklearn.utils.class_weight import compute_sample_weight
#use class weights for handling unbalanced dataset
if mode == 'INFER' #test/dev mode, not weighing loss in test mode
sample_weights = np.ones(labels.shape)
else:
sample_weights = compute_sample_weight(class_weight='balanced', y=labels)
这包含在你的模型类定义中:
#an extra placeholder for sample weights
#assuming you already have batch_size tensor
self.sample_weight = tf.placeholder(dtype=tf.float32, shape=[None],
name='sample_weights')
cross_entropy_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=self.label, logits=logits,
name='cross_entropy_loss')
cross_entropy_loss = tf.reduce_sum(cross_entropy_loss*self.sample_weight) / batch_size
答案 5 :(得分:1)
ops tf.nn.weighted_cross_entropy_with_logits()是否有两个类:
classes_weights = tf.constant([0.1, 1.0])
cross_entropy = tf.nn.weighted_cross_entropy_with_logits(logits=logits, targets=labels, pos_weight=classes_weights)
答案 6 :(得分:0)
org.springframework.beans.factory.BeanCreationException: Error creating bean with name
'org.dspace.storage.bitstore.BitstreamStorageService' defined in file
[/dspace/config/spring/api/bitstore.xml]: Cannot resolve reference to bean 's3Store' while
setting bean property 'stores' with key [TypedStringValue: value [0], target type [null]];
nested exception is org.springframework.beans.factory.BeanCreationException: Error
creating bean with name 's3Store' defined in file
[/dspace/config/spring/api/bitstore.xml]: Error setting property values; nested exception
is org.springframework.beans.NotWritablePropertyException: Invalid property
's3ConnectionTTL' of bean class [org.dspace.storage.bitstore.S3BitStoreService]: Bean
property 's3ConnectionTTL' is not writable or has an invalid setter method. Does the
parameter type of the setter match the return type of the getter?
用法:
""" Weighted binary crossentropy between an output tensor and a target tensor.
# Arguments
pos_weight: A coefficient to use on the positive examples.
# Returns
A loss function supposed to be used in model.compile().
"""
def weighted_binary_crossentropy(pos_weight=1):
def _to_tensor(x, dtype):
"""Convert the input `x` to a tensor of type `dtype`.
# Arguments
x: An object to be converted (numpy array, list, tensors).
dtype: The destination type.
# Returns
A tensor.
"""
return tf.convert_to_tensor(x, dtype=dtype)
def _calculate_weighted_binary_crossentropy(target, output, from_logits=False):
"""Calculate weighted binary crossentropy between an output tensor and a target tensor.
# Arguments
target: A tensor with the same shape as `output`.
output: A tensor.
from_logits: Whether `output` is expected to be a logits tensor.
By default, we consider that `output`
encodes a probability distribution.
# Returns
A tensor.
"""
# Note: tf.nn.sigmoid_cross_entropy_with_logits
# expects logits, Keras expects probabilities.
if not from_logits:
# transform back to logits
_epsilon = _to_tensor(K.epsilon(), output.dtype.base_dtype)
output = tf.clip_by_value(output, _epsilon, 1 - _epsilon)
output = log(output / (1 - output))
target = tf.dtypes.cast(target, tf.float32)
return tf.nn.weighted_cross_entropy_with_logits(labels=target, logits=output, pos_weight=pos_weight)
def _weighted_binary_crossentropy(y_true, y_pred):
return K.mean(_calculate_weighted_binary_crossentropy(y_true, y_pred), axis=-1)
return _weighted_binary_crossentropy