我在 python3 中使用K-means进行教育。 我有一个多维的聚类和质心数据集。 我需要使用 t-SNE 在 2D 中可视化这些数据。
任何人都可以帮助我这样做。 (关于代码的一点解释对我很有帮助。)
数据集如下:
质心:
[0.0, 0.0, 1.125, 0.5, 0.25, 0.375, 0.125, 0.0, 0.75, 0.0, 0.0, 0.0, 0.0, 1.5, 0.5, 0.125, 0.0, 0.75, 0.25, 0.0, 1.75, 0.0, 0.0, 1.125, 0.125, 0.625, 0.25, 0.0, 0.25, 0.0, 0.625, 0.75, 0.0, 0.0, 0.625, 0.0, 0.75, 0.0, 0.625, 0.0, 0.0, 1.375, 0.625, 0.0, 1.0, 1.25, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.25, 0.625, 0.875, 0.0, 0.75, 1.25, 1.5, 0.0, 0.0]
[1.6666666666666667, 1.5833333333333333, 0.4166666666666667, 0.16666666666666666, 0.16666666666666666, 0.08333333333333333, 0.08333333333333333, 0.0, 0.08333333333333333, 0.16666666666666666, 0.0, 0.0, 0.0, 1.3333333333333333, 1.0, 0.0, 0.0, 0.0, 0.3333333333333333, 0.0, 0.3333333333333333, 0.0, 0.08333333333333333, 0.08333333333333333, 0.16666666666666666, 0.0, 0.0, 0.25, 0.0, 0.0, 0.16666666666666666, 0.0, 0.0, 0.0, 1.1666666666666667, 1.1666666666666667, 0.0, 0.0, 0.0, 0.16666666666666666, 0.0, 0.0, 0.9166666666666666, 0.0, 0.0, 0.16666666666666666, 0.0, 0.16666666666666666, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.16666666666666666, 0.25, 0.0, 0.4166666666666667, 0.75, 0.4166666666666667, 0.0, 0.0]
[0.0, 0.0, 0.16666666666666666, 0.6666666666666666, 0.16666666666666666, 1.6666666666666667, 1.6111111111111112, 0.2222222222222222, 0.5, 0.0, 0.05555555555555555, 1.2222222222222223, 0.5555555555555556, 0.0, 0.0, 0.1111111111111111, 0.05555555555555555, 0.0, 0.6666666666666666, 0.0, 0.6111111111111112, 0.0, 0.4444444444444444, 0.3333333333333333, 0.5, 0.0, 0.0, 0.05555555555555555, 0.0, 0.0, 0.05555555555555555, 0.16666666666666666, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05555555555555555, 0.7222222222222222, 0.0, 0.0, 1.2777777777777777, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.9444444444444444, 0.05555555555555555, 0.3888888888888889, 0.0, 0.3888888888888889, 0.5, 0.4444444444444444, 0.3333333333333333, 0.0]
[0.06976744186046512, 0.13953488372093023, 0.13953488372093023, 0.627906976744186, 0.11627906976744186, 0.37209302325581395, 0.18604651162790697, 0.023255813953488372, 0.0, 0.0, 0.0, 0.27906976744186046, 0.13953488372093023, 0.20930232558139536, 0.11627906976744186, 0.13953488372093023, 0.06976744186046512, 0.09302325581395349, 0.18604651162790697, 0.023255813953488372, 0.8372093023255814, 0.13953488372093023, 0.11627906976744186, 0.27906976744186046, 0.06976744186046512, 0.023255813953488372, 0.18604651162790697, 0.046511627906976744, 0.0, 0.0, 0.046511627906976744, 0.11627906976744186, 0.06976744186046512, 0.18604651162790697, 0.046511627906976744, 0.023255813953488372, 0.023255813953488372, 0.06976744186046512, 0.09302325581395349, 0.06976744186046512, 0.13953488372093023, 0.023255813953488372, 0.2558139534883721, 0.023255813953488372, 0.18604651162790697, 0.2558139534883721, 0.0, 0.23255813953488372, 0.18604651162790697, 0.023255813953488372, 0.06976744186046512, 0.11627906976744186, 0.0, 0.06976744186046512, 0.046511627906976744, 0.3023255813953488, 0.046511627906976744, 0.23255813953488372, 0.2558139534883721, 0.3023255813953488, 0.0, 0.09302325581395349]
[0.0, 0.0, 0.5, 0.0, 1.5, 0.25, 0.0, 2.5, 1.75, 0.75, 1.0, 0.0, 0.0, 1.0, 0.0, 0.25, 1.5, 0.0, 0.5, 0.0, 0.0, 0.0, 0.0, 1.25, 0.5, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.75, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5, 0.25, 0.0, 0.5, 0.25, 0.0, 0.0, 0.0, 1.5, 0.0, 0.0, 0.0, 0.5, 0.0, 0.0, 0.0, 0.5, 1.0, 0.0, 0.0, 0.0]
集群:
cluster_01:>
[0 0 1 0 1 0 0 0 1 0 0 0 0 2 0 0 0 0 0 0 2 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0 2 0 0 2 1 0 0 0 0 0 2 0 0 0 0 0 1 2 0 0 0]
[0 0 1 0 1 0 0 0 2 0 0 0 0 2 0 0 0 0 0 0 2 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0 2 0 0 2 1 0 0 0 0 0 2 0 0 0 0 0 1 2 0 0 0]
[0 0 0 2 0 1 0 0 1 0 0 0 0 1 2 0 0 0 0 0 0 0 0 1 0 3 1 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 0 2 3 0 0 0 2 0 0]
[0 0 0 2 0 1 0 0 1 0 0 0 0 1 2 0 0 0 0 0 0 0 0 1 1 2 1 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 0 2 2 0 0 0 2 0 0]
[0 0 2 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 2 0 0 0 0 2 1 0 2 0 0 0 0 0 0 1 0 1 0 0 0 1 2 3 0 0]
[0 0 2 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 2 0 0 0 0 2 1 0 2 0 0 0 0 0 0 2 0 1 0 0 0 1 2 2 0 0]
[0 0 1 0 0 0 0 0 1 0 0 0 0 2 0 0 0 0 2 0 3 0 0 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 2 0 0 0 0 0 1 0 0 1 0 0 1 2 1 0 0]
[0 0 2 0 0 1 1 0 0 0 0 0 0 0 0 1 0 2 0 0 3 0 0 1 0 0 0 0 0 0 1 2 0 0 0 0 2 0 1 0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 2 0 1 0 2 0 0]
cluster_02:>
[1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[2 2 0 0 1 0 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 2 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0]
[1 2 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 1 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0]
[2 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 2 0 0 0]
[2 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 2 0 0 0]
[0 3 2 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 2 0 0]
[3 2 2 0 0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 2 0 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 2 2 0 0]
[3 3 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 2 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[2 1 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[2 1 0 1 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[2 1 0 1 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
cluster_03:>
[0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 2 0 2 1 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 2 0]
[0 0 0 0 0 2 0 2 1 0 0 2 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 2 0]
[0 0 0 2 0 1 2 0 1 0 1 0 0 0 0 1 0 0 2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 1 0 2 0 1 0 0 0 0]
[0 0 0 2 0 1 2 0 1 0 0 0 1 0 0 1 0 0 2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 1 0 2 0 1 0 0 0 0]
[0 0 0 0 0 2 1 1 0 0 0 2 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 1 0]
[0 0 0 0 0 2 1 1 0 0 0 2 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 1 0]
[0 0 1 0 0 2 1 0 1 0 0 2 1 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 1 0 1 0 0 1 2 0 0]
[0 0 1 0 0 1 1 0 1 0 0 2 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 2 0 0]
[0 0 0 2 1 2 3 0 1 0 0 1 0 0 0 0 0 0 3 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 2 1 2 2 0 1 0 0 1 0 0 0 0 0 0 2 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 2 1 0 0 0 0 2 0 0 0 0 0 0 0 0 3 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 0 0]
[0 0 0 0 1 1 3 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 1 0 0 0 2 1 0 0 0]
[0 0 1 0 0 2 1 0 1 0 0 3 2 0 0 0 0 0 1 0 1 0 2 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 1 1 0 0 2 2 2 0 0]
[0 0 0 0 0 2 2 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 2 0 0 2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0]
[0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0]
cluster_04:>
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[1 0 0 3 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 2 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 3 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0]
[0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 2 0 0 0 0 0 0 1 0 0 1 2 0 0]
[0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 2 0 0 0 0 0 0 1 0 0 1 1 0 0]
[0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 0 1 2 0 1 1 0 0 0]
[0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 0 1 2 0 1 1 0 0 0]
[0 0 0 2 0 0 3 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0]
[0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0]
[0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 2 0 0 1 0 0 0 2 0 0 0 0 2 2 0 0 0 0 0 1 0 0 1 0 0 0 0 2 0 0 1 0 0 0 0 2 0 1 1 1 0 2]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 2 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2 0 0 2 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 2 0 0 0 0 0 0 0 0 2 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 2 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 2 0 0 0 0 0 0 2 0 0 0 0 0 2 0 0 0 0]
[0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2 0 0 0 0 2 2 0 0 0 0 0 0 0 0 1 0 2 0 0]
[0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 2 0 0]
[0 1 0 2 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0]
[0 0 0 0 1 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 1 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0]
[0 0 0 0 1 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0]
[0 0 0 0 1 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
cluster_05:>
[0 0 0 0 1 0 0 2 2 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 2 1 0 0 0 1 0 0 0 0 0 0 0 2 0 0 0 0]
[0 0 0 0 0 0 0 2 2 0 2 0 0 1 0 0 2 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0]
[0 0 2 0 3 0 0 3 2 0 2 0 0 1 0 0 2 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 1 0 0 0]
[0 0 0 0 2 1 0 3 1 2 0 0 0 2 0 1 2 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 2 0 0 0]
答案 0 :(得分:1)
您可以在所有数据点上使用sklearn' TSNE.fit_transform()
并以新的缩小尺寸接收它们。
from sklearn.manifold import TSNE
all_nodes = clus1 + clus2 + clus3 + clus4 + clus5 + centroids
result = TSNE(n_components=2, learning_rate=100, early_exaggeration=50).fit_transform(all_nodes)
获得相同的情节:
import seaborn as sns
import pandas as pd
X = {
'x': result[:,0],
'y': result[:,1],
'col' : ['clus1'] * len(clus1) + ['clus2'] * len(clus2) + ['clus3'] * len(clus3) + ['clus4'] * len(clus4) + ['clus5'] * len(clus5) + ['centroids'] * len(centroids),
}
data = pd.DataFrame(data=X)
sns.set(style="white", color_codes=True)
sns.lmplot( x="x", y="y", data=data, fit_reg=False, hue='col',
markers=['o', 'o', 'o', 'o', 'o', 'x'])
您可以自己调整TSNE的参数。您可以找到所有参数here。
<强>更新强>
如果你想在matplotlib中绘制图表,我很快将这段代码整理在一起:
group_sizes = [len(arr) for arr in [clus1, clus2, clus3, clus4, clus5]]
colors = ['red', 'blue', 'green', 'purple', 'orange']
start_pos = 0
for idx, (pos, col) in enumerate(zip(group_sizes, colors)):
plt.scatter(X['x'][start_pos:start_pos+pos], X['y'][start_pos:start_pos+pos], c=col, marker='o', label='Cluster {}'.format(idx+1))
start_pos += pos
plt.scatter(X['x'][-5:], X['y'][-5:], c='black', marker='x', label='Centroids')
_ = plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
输出