我有以下课程:
class TfidfEmbeddingVectorizer(object):
def __init__(self, word2vec):
self.word2vec = word2vec
self.word2weight = None
self.dim = len(word2vec[next(iter(w2v))])
def fit(self, X, y):
tfidf = TfidfVectorizer(analyzer=lambda x: x)
tfidf.fit(X)
# if a word was never seen - it must be at least as infrequent
# as any of the known words - so the default idf is the max of
# known idf's
max_idf = max(tfidf.idf_)
self.word2weight = defaultdict(
lambda: max_idf,
[(w, tfidf.idf_[i]) for w, i in tfidf.vocabulary_.items()])
return self
def transform(self, X):
return np.array([
np.mean([self.word2vec[w] * self.word2weight[w]
for w in words if w in self.word2vec] or
[np.zeros(self.dim)], axis=0)
for words in X
])
但是当我实例化它时,我收到以下错误:
File "<ipython-input-70-dcde03597dd3>", line 23, in <listcomp>
for w in words if w in self.word2vec] or
TypeError: 'NoneType' object is not subscriptable
答案 0 :(得分:2)
好吧,当您收到TypeError: 'NoneType' object is not subscriptable
错误时,您正尝试执行None[0]
之类的操作。
你的问题就在这里:
self.word2weight = None
然后你试图在这里访问它:
np.mean([self.word2vec[w] * self.word2weight[w]
也许您需要先调用函数fit
,然后在word2weight