我正在尝试编写一个matlab程序,通过梯形和辛普森统计来计算积分。梯形程序如下:
function [int, flag, stats] = trapComp(f, a, b, tol, hMin)
% Initialise variables
h = b - a;
n = 1;
int = h / 2 * (f(a) + f(b));
flag = 1;
if nargout == 3
stats = struct('totalErEst', [], 'totalNrIntervals', [], 'nodesList', []);
end
while h > hMin
h = h / 2;
n = 2 * n;
if h < eps % Check if h is not "zero"
break;
end
% Update the integral with the new nodes
intNew = int / 2;
for j = 1 : 2 : n
intNew = intNew + h * f(a + j * h);
end
% Estimate the error
errorEst = 1 / 3 * (int - intNew);
int = intNew;
if nargout == 3 % Update stats
stats.totalErEst = [stats.totalErEst; abs(errorEst)];
stats.totalNrIntervals = [stats.totalNrIntervals; n / 2];
end
if abs(errorEst) < tol
flag = 0;
break
end
end
end
现在辛普森统治我真的不能解决。我知道它非常相似,但我似乎无法弄明白。
这是我的辛普森代码:
function [int, flag, stats] = simpComp(f, a, b, tol, hMin)
% Initialise variables
h = b - a;
n = 1;
int = h / 3 * (f(a) + 4 * f((a+b)/2) + f(b));
flag = 1;
if nargout == 3
stats = struct('totalErEst', [], 'totalNrIntervals', [], 'nodesList', []);
end
while h > hMin
h = h / 2;
n = 2 * n;
if h < eps % Check if h is not "zero"
break;
end
% Update the integral with the new nodes
intNew = int / 2;
for j = 1 : 2 : n
intNew = intNew + h * f(a + j * h);
end
% Estimate the error
errorEst = 1 / 3 * (int - intNew);
int = intNew;
if nargout == 3 % Update stats
stats.totalErEst = [stats.totalErEst; abs(errorEst)];
stats.totalNrIntervals = [stats.totalNrIntervals; n / 2];
end
if abs(errorEst) < tol
flag = 0;
break
end
end
end
然而,使用它可以得到一个误差大于梯形的积分的答案,我认为它不应该。
任何帮助将不胜感激