我有一个使用梯形法则来评估双积分的任务。第一部分是使用带限制的梯形法则来评估双积分 0 <= x <= 2,0 <= y <= 1
我有一个工作脚本:
N = 100;
xh= 1.25;
x = linspace(0,2,N);
y = linspace(0,1,0.5*N);
dx = diff(x(1:2));
dy = diff(y(1:2));
[x,y] = meshgrid(x,y);
funk = exp(-10.*((x-xh).^2+y.^2)).*cos(y.*(x-xh));
funk(2:end-1,:) = funk(2:end-1,:)*2;
funk(:,2:end-1) = funk(:,2:end-1)*2;
out = sum(funk(:))*dx*dy/4;
disp(out)
现在对于第二部分,限制是0&lt; = x&lt; = 2,0 <= y&lt; =((pi * x)/ 2)
如何获得y(代码中的第4行)从x矩阵中获取相应的x值以创建y矩阵?如果我开始工作,我不应该改变代码中的任何其他内容,或者我错过了什么?
答案 0 :(得分:2)
有趣的问题。想象一个网格,x
坐标跨越0 <= x <= 2
,y
坐标跨越0 <= y <= pi
。这是因为当x = 2
时,y = pi*2/2 = pi
。
现在想象一下从原点到pi/2
绘制一条正斜率为(x,y) = (2,pi)
的直线。您要关注的(x,y)
值是网格的右下角。
要做到这一点,只需创建meshgrid
x
[0,2]
跨越y
以及[0,pi]
跨越%// Generate grid of points
N = 100;
xx = linspace(0,2,N);
yy = linspace(0,pi,N);
[x,y] = meshgrid(xx,yy);
%// Obtain valid region
ind = y <= (pi/2)*x;
%// Show valid region in black and white
imagesc(ind);
axis xy;
colormap gray;
set(gca,'XTick',10:10:100);
set(gca,'YTick',10:10:100);
set(gca,'XTickLabel',xx(10:10:end));
set(gca,'YTickLabel',yy(10:10:end));
,然后选择网格的右下角。假设网格为100 x 100点:
ind
这是我们得到的数字:
白色区域是我们追求的区域。 logical
包含meshgrid
矩阵,可让我们选择我们需要选择的%// Generate grid of points
N = 100;
xh = 1.25;
xx = linspace(0,2,N);
yy = linspace(0,pi,N);
[x,y] = meshgrid(xx,yy);
%// Obtain valid region
ind = y <= (pi/2)*x;
%// Perform calculations with normal grid
dx = diff(xx(1:2));
dy = diff(yy(1:2));
funk = exp(-10.*((x-xh).^2+y.^2)).*cos(y.*(x-xh));
funk(2:end-1,:) = funk(2:end-1,:)*2;
funk(:,2:end-1) = funk(:,2:end-1)*2;
%// Select out valid region coordinates
funk = funk(ind);
%// Now sum
out = sum(funk(:))*dx*dy/4;
中的哪些值。因此,您的代码现在就是这样:
out
对于>> out
out =
0.156821355105871
,我得到:
{{1}}