我试图编写一个显示二叉搜索树高度的函数,如下所示。问题是我应该编写一个没有任何参数或参数的函数。这真的让我很难过。我尝试在参数列表之外声明root但是没有用。任何解决方案?
int height (Node root){
if (root == null) {
return 0;
}
int hleftsub = height(root.m_left);
int hrightsub = height(root.m_right);
return Math.max(hleftsub, hrightsub) + 1;
}
我的导师提供的方法签名是
int height ()
编辑:
我的完整代码
import javax.swing.tree.TreeNode;
import java.util.Scanner;
import java.io.FileNotFoundException;
import java.io.File;
import java.util.ArrayList;
class BinarySearchTree<E extends Comparable<E>> {
public Node<E> root;
public int m_size = 0;
public BinarySearchTree() {
}
public boolean search(E value) {
boolean ret = false;
Node<E> current = root;
while (current != null && ret != true) {
if (current.m_value.compareTo(current.m_value) == 0) {
ret = true;
} else if (current.m_value.compareTo(current.m_value) > 0) {
current = current.m_left;
} else {
current = current.m_right;
}
}
return false;
}
public boolean insert(E value) {
if (root == null) {
root = new Node<>(value);
m_size++;
} else {
Node<E> current = root;
Node<E> parentNode = null;
while (current != null)
if (current.m_value.compareTo(value) > 0) {
parentNode = current;
current = current.m_left;
} else if (current.m_value.compareTo(value) < 0) {
parentNode = current;
current = current.m_right;
} else {
return false;
}
if (current.m_value.compareTo(value) < 0) {
parentNode.m_left = new Node<>(value);
} else {
parentNode.m_right = new Node<>(value);
}
}
m_size++;
return true;
}
boolean remove(E value) {
if (!search(value)) {
return false;
}
Node check = root;
Node parent = null;
boolean found = false;
while (!found && check != null) {
if (value.compareTo((E) check.m_value) == 0) {
found = true;
} else if (value.compareTo((E) check.m_value) < 0) {
parent = check;
check = check.m_left;
} else {
parent = check;
check = check.m_right;
}
}
if (check == null) {
return false;
} else if (check.m_left == null) {
if (parent == null) {
root = check.m_right;
} else if (value.compareTo((E) parent.m_value) < 0) {
parent.m_left = check.m_right;
} else {
parent.m_right = check.m_right;
}
} else {
Node<E> parentofRight = check;
Node<E> rightMost = check.m_left;
while (rightMost.m_right != null) {
parentofRight = rightMost;
rightMost = rightMost.m_right;
}
check.m_value = rightMost.m_value;
if (parentofRight.m_right == rightMost) {
rightMost = rightMost.m_left;
} else {
parentofRight.m_left = rightMost.m_left;
}
}
m_size--;
return true;
}
int numberNodes () {
return m_size;
}
int height (Node root){
if (root == null) {
return 0;
}
int hleftsub = height(root.m_left);
int hrightsub = height(root.m_right);
return Math.max(hleftsub, hrightsub) + 1;
}
int numberLeafNodes(Node node){
if (node == null) {
return 0;
}
else if(node.m_left == null && node.m_right == null){
return 1;
}
else{
return numberLeafNodes(node.m_left) + numberLeafNodes(node.m_right);
}
}
void display(String message){
if(root == null){
return;
}
display(String.valueOf(root.m_left));
display(String.valueOf(root));
display(String.valueOf(root.m_right));
}
}
class Node<E> {
public E m_value;
public Node<E> m_left;
public Node<E> m_right;
public Node(E value) {
m_value = value;
}
}
答案 0 :(得分:1)
请参阅:https://www.geeksforgeeks.org/iterative-method-to-find-height-of-binary-tree/
如果您使用该实现,请删除该参数,因为height()
已有权访问root
。
然而,这需要一个队列,O(n)
时间和O(n)
空间。
height()
可能是一个公共方法,它调用启动递归的私有方法height(Node node)
。 BST的O(n)
时间,O(1)
空间。
您可以将高度作为额外参数传递,以递归方式插入树中,这样您就可以计算递归调用的数量(这与您所在树中的深度/#水平直接相关)。一旦节点找到它的位置,如果您传递的高度(递归调用的数量)超过了树存储的实例变量height
,则将实例变量更新为新的高度。这也将允许tree.height()
成为恒定时间函数。 O(1)
时间,O(1)
空间。