我有一个Pandas数据框,其中包含一系列列表。我想在这个系列中使用SciKit-Learn的OneHotEncoder。我一直有价值错误。
我的问题转载为:
import pandas as pd
import numpy as np
d = {'A': [[5,7], [3, 4, 5], [2], [1,2,3,4]]}
df = pd.DataFrame(data=d)
df
A
0 [5, 7]
1 [3, 4, 5]
2 [2]
3 [1, 2, 3, 4]
a = np.array(df['A'])
a
array([list([5, 7]), list([3, 4, 5]), list([2]), list([1, 2, 3, 4])],
dtype=object)
from sklearn.preprocessing import OneHotEncoder
enc = OneHotEncoder(sparse = False)
X = enc.fit_transform(a)
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-47-64181a9f7331> in <module>()
----> 1 X = enc.fit_transform(a)
~\Anaconda3\lib\site-packages\sklearn\preprocessing\data.py in fit_transform(self, X, y)
2017 """
2018 return _transform_selected(X, self._fit_transform,
-> 2019 self.categorical_features, copy=True)
2020
2021 def _transform(self, X):
~\Anaconda3\lib\site-packages\sklearn\preprocessing\data.py in _transform_selected(X, transform, selected, copy)
1807 X : array or sparse matrix, shape=(n_samples, n_features_new)
1808 """
-> 1809 X = check_array(X, accept_sparse='csc', copy=copy, dtype=FLOAT_DTYPES)
1810
1811 if isinstance(selected, six.string_types) and selected == "all":
~\Anaconda3\lib\site-packages\sklearn\utils\validation.py in check_array(array, accept_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator)
431 force_all_finite)
432 else:
--> 433 array = np.array(array, dtype=dtype, order=order, copy=copy)
434
435 if ensure_2d:
ValueError: setting an array element with a sequence.
我使用的是Windows 10,python 3.6.4,SciKit-Learn 0.19.1
非常感谢任何人的想法!
答案 0 :(得分:1)
对于列表项,您应该在MultiLabelBinarizer
sklearn
from sklearn.preprocessing import MultiLabelBinarizer
mlb = MultiLabelBinarizer()
print (pd.DataFrame(mlb.fit_transform(df['A']),columns=mlb.classes_, index=df.index))
1 2 3 4 5 7
0 0 0 0 0 1 1
1 0 0 1 1 1 0
2 0 1 0 0 0 0
3 1 1 1 1 0 0