我有以下Pandas系列名为Fruits:
Out[33]:
Apples
0 [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, ...
1 [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, ...
2 [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, ...
3 [0.0, 1.0, 2.0, 3.0, 4.0]
4 [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, ...
5 [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, ...
6 [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, ...
7 [0.0, 1.0, 2.0, 3.0, 4.0]
8 [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, ...
9 [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0]
dtype: object
我想反转每一行(水平)。我使用代码Fruits [:: - 1],但输出与索引Apples(列)相反。一些想法可以扭转一系列的系列?
答案 0 :(得分:0)
喜欢这个吗?
0 [1] [2] [3] [4] [5]
1 [1] [2] [3] [4] [5]
2 [1] [2] [3] [4] [5]
3 [1] [2] [3] [4] [5]
4 [1] [2] [3] [4] [5]
=>
4 [5] [4] [3] [2] [1]
3 [5] [4] [3] [2] [1]
2 [5] [4] [3] [2] [1]
1 [5] [4] [3] [2] [1]
0 [5] [4] [3] [2] [1]
你会得到:
select emplid, empl_rcd, company, plan_type, accrual_proc_dt, hrs_taken_unproc,
'N' as y_no_hrs_taken -- is this really needed?
from ps_leave_accrual
where accrual_proc_dt > :1
and plan_type in ('50', '51')
and hrs_taken_unproc = 0
and (emplid, plan_type, accrual_proc_dt)
not in (
select emplid, plan_type, accrual_proc_dt
from ps_y_sic_vac_hrs
where accrual_proc_dt > :1
and plan_type in ('50', '51')
and hrs_taken_unproc = 0
and y_no_hrs_taken = 'Y'
)
;
答案 1 :(得分:0)
s = pd.Series({0: [0, 1, 2, 3, 4],
1: [0, 1, 2, 3, 4],
2: [0, 1, 2, 3, 4],
3: [0, 1, 2, 3, 4],
4: [0, 1, 2, 3, 4]})
s.index.name='Apples'
print(s)
Apples
0 [0, 1, 2, 3, 4]
1 [0, 1, 2, 3, 4]
2 [0, 1, 2, 3, 4]
3 [0, 1, 2, 3, 4]
4 [0, 1, 2, 3, 4]
dtype: object
# use apply function to reverse the values row by row.
s.apply(lambda x: x[::-1])
Out[850]:
Apples
0 [4, 3, 2, 1, 0]
1 [4, 3, 2, 1, 0]
2 [4, 3, 2, 1, 0]
3 [4, 3, 2, 1, 0]
4 [4, 3, 2, 1, 0]
dtype: object
答案 2 :(得分:0)
您似乎需要str[::-1]
:
Fruits = pd.Series(
[[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2],
[0, 1, 2, 3, 4],
[0, 1]]).rename_axis('Apples')
print (Fruits)
Apples
0 [0, 1, 2, 3, 4]
1 [0, 1, 2, 3, 4]
2 [0, 1, 2]
3 [0, 1, 2, 3, 4]
4 [0, 1]
dtype: object
print(Fruits.str[::-1])
Apples
0 [4, 3, 2, 1, 0]
1 [4, 3, 2, 1, 0]
2 [2, 1, 0]
3 [4, 3, 2, 1, 0]
4 [1, 0]
dtype: object