我创建了一个用于欺诈检测的ml模型:
实际型号代码的一小部分:
from sklearn.metrics import classification_report, accuracy_score
from sklearn.ensemble import IsolationForest
from sklearn.neighbors import LocalOutlierFactor
# define a random state
state = 1
# define the outlier detection method
classifiers = {
"Isolation Forest": IsolationForest(max_samples=len(X),
contamination=outlier_fraction,
random_state=state),
"Local Outlier Factor": LocalOutlierFactor(
n_neighbors = 20,
contamination = outlier_fraction)
}
import pickle
# fit the model
n_outliers = len(Fraud)
for i, (clf_name, clf) in enumerate(classifiers.items()):
# fit te data and tag outliers
if clf_name == "Local Outlier Factor":
y_pred = clf.fit_predict(X)
# Export the classifier to a file
with open('model.pkl', 'wb') as model_file:
pickle.dump(clf, model_file)
scores_pred = clf.negative_outlier_factor_
else:
clf.fit(X)
scores_pred = clf.decision_function(X)
y_pred = clf.predict(X)
# Export the classifier to a file
with open('model.pkl', 'wb') as model_file:
pickle.dump(clf, model_file)
# Reshape the prediction values to 0 for valid and 1 for fraudulent
y_pred[y_pred == 1] = 0
y_pred[y_pred == -1] = 1
n_errors = (y_pred != Y).sum()
# run classification metrics
print('{}:{}'.format(clf_name, n_errors))
print(accuracy_score(Y, y_pred ))
print(classification_report(Y, y_pred ))
我已在Google Cloud Platform上成功创建了存储桶,ml模型和版本。 但作为ml世界的初学者,我很困惑,我如何将输入传递给这个模型以获得真正的预测,因为这个模型现在部署在Google的ML-Engine上。
更新:如N3da的回答所述,现在我正在使用此代码进行在线预测:
import os
from googleapiclient import discovery
from oauth2client.client import GoogleCredentials
PROJECT_ID = "PROJECT_ID"
VERSION_NAME = "VERSION"
MODEL_NAME = "MODEL_NAME"
credentials = GoogleCredentials.get_application_default()
service = discovery.build('ml', 'v1', credentials=credentials)
name = 'projects/{}/models/{}'.format(PROJECT_ID, MODEL_NAME)
name += '/versions/{}'.format(VERSION_NAME)
data = {
"instances": [
[265580, 7, 68728, 8.36, 4.76, 84.12, 79.36, 3346, 1, 11.99, 1.14,
655012, 0.65, 258374, 0, 84.12],
]
}
response = service.projects().predict(
name=name,
body={'instances': data}
).execute()
if 'error' in response:
print (response['error'])
else:
online_results = response['predictions']
print(online_results)
但它将访问错误返回为:
googleapiclient.errors.HttpError:https://ml.googleapis.com/v1/projects/PROJECT_ID/models/MODEL_NAME/versions/VERSION:predict ?alt = json返回“访问模型已拒绝。”>
请帮帮我!
答案 0 :(得分:3)
成功创建Version
后,您可以使用gcloud
工具或发送http请求来获取在线预测。从this开始,这是一个从python代码发送http请求的示例:
service = googleapiclient.discovery.build('ml', 'v1')
name = 'projects/{}/models/{}'.format(PROJECT_ID, MODEL_NAME)
name += '/versions/{}'.format(VERSION_NAME)
response = service.projects().predict(
name=name,
body={'instances': data}
).execute()
if 'error' in response:
print (response['error'])
else:
online_results = response['predictions']
上例中的 data
将是一个列表,其中每个元素都是模型接受的实例。 Here是有关预测请求和响应的更多信息。
更新:
对于您提到的权限问题,有助于了解您最初(通过gcloud,UI控制台,笔记本电脑等)创建模型和版本的方式/位置。错误消息表明您的用户可以访问您的项目,但不模型。尝试从运行python代码的任何地方运行gcloud auth login
,并确认它显示为默认项目的项目与您的PROJECT_ID匹配。