使用扩张卷积对语义分割进行上采样

时间:2018-04-13 09:16:39

标签: c++ caffe semantic-segmentation

我正在开发一个使用扩张(atrous)卷积网络进行语义分割的项目。我正在使用caffe框架。我的输入数据和标签大小为:

data (1 3 1158 1544 )
label (1 1 1158 1544)

我正在使用softmax进行评估。

网络正常工作,直到Softmax图层要求输入blob应该给出相同的尺寸。通常在这个网络中,数据的大小变小,我需要在将其提供给Softmax层之前调整大小。

我需要一些想法,如何在将数据输入softmax图层之前调整数据大小。我知道我可以使用双线性插值去卷积并做一些裁剪但我错过了如何继续的想法。

任何帮助都将非常感激。

日志的最后部分如下:

I0413 11:44:45.734990 18455 net.cpp:84] Creating Layer ct_final
I0413 11:44:45.734992 18455 net.cpp:406] ct_final <- ct_fc1
I0413 11:44:45.734997 18455 net.cpp:380] ct_final -> score_fc1
I0413 11:44:45.736572 18455 net.cpp:122] Setting up ct_final
I0413 11:44:45.736582 18455 net.cpp:129] Top shape: 1 32 33 81 (85536)
I0413 11:44:45.736583 18455 net.cpp:137] Memory required for data: 5731224640
I0413 11:44:45.736588 18455 layer_factory.hpp:77] Creating layer deconv1_bilinear
I0413 11:44:45.736598 18455 net.cpp:84] Creating Layer deconv1_bilinear
I0413 11:44:45.736599 18455 net.cpp:406] deconv1_bilinear <- score_fc1
I0413 11:44:45.736604 18455 net.cpp:380] deconv1_bilinear -> score_deconv1
I0413 11:44:45.740128 18455 net.cpp:122] Setting up deconv1_bilinear
I0413 11:44:45.740137 18455 net.cpp:129] Top shape: 1 32 136 328 (1427456)
I0413 11:44:45.740139 18455 net.cpp:137] Memory required for data: 5736934464
I0413 11:44:45.740144 18455 layer_factory.hpp:77] Creating layer deconv2_bilinear
I0413 11:44:45.740151 18455 net.cpp:84] Creating Layer deconv2_bilinear
I0413 11:44:45.740154 18455 net.cpp:406] deconv2_bilinear <- score_deconv1
I0413 11:44:45.740160 18455 net.cpp:380] deconv2_bilinear -> score
I0413 11:44:45.743669 18455 net.cpp:122] Setting up deconv2_bilinear
I0413 11:44:45.743695 18455 net.cpp:129] Top shape: 1 32 548 1316 (23077376)
I0413 11:44:45.743697 18455 net.cpp:137] Memory required for data: 5829243968
I0413 11:44:45.743700 18455 layer_factory.hpp:77] Creating layer loss
I0413 11:44:45.743721 18455 net.cpp:84] Creating Layer loss
I0413 11:44:45.743723 18455 net.cpp:406] loss <- score
I0413 11:44:45.743727 18455 net.cpp:406] loss <- label
I0413 11:44:45.743731 18455 net.cpp:380] loss -> loss
I0413 11:44:45.743762 18455 layer_factory.hpp:77] Creating layer loss
F0413 11:44:45.778823 18455 softmax_loss_layer.cpp:47] Check failed:outer_num_ * inner_num_ == bottom[1]->count() (721168 vs. 1787952) Number of labels must match number of predictions; e.g., if softmax axis == 1 and prediction shape is (N, C, H, W), label count (number of labels) must be N*H*W, with integer values in {0, 1, ..., C-1}.
*** Check failure stack trace: ***
    @     0x7f4ecd1215cd  google::LogMessage::Fail()
    @     0x7f4ecd123433  google::LogMessage::SendToLog()
    @     0x7f4ecd12115b  google::LogMessage::Flush()
    @     0x7f4ecd123e1e  google::LogMessageFatal::~LogMessageFatal()
    @     0x7f4ecd7bceb8  caffe::SoftmaxWithLossLayer<>::Reshape()
    @     0x7f4ecd7b10d7  caffe::Net<>::Init()
    @     0x7f4ecd7b380e  caffe::Net<>::Net()
    @     0x7f4ecd7414da  caffe::Solver<>::InitTrainNet()
    @     0x7f4ecd7429a5  caffe::Solver<>::Init()
    @     0x7f4ecd742cbf  caffe::Solver<>::Solver()
    @     0x7f4ecd786f11  caffe::Creator_AdamSolver<>()
    @           0x40a7d8  train()
    @           0x407568  main
    @     0x7f4ecb8b7830  __libc_start_main
    @           0x407e39  _start
    @              (nil)  (unknown)

如果你们需要train.prototxt,请告诉我。

谢谢!

1 个答案:

答案 0 :(得分:1)

解卷积确实是在卷积步骤之后回到原始输入大小的常用方法:这是语义分割神经网络的基本架构:完全卷积网络(FCN)。

如果您需要有关如何使用它的示例,请查看此repository:它包含许多Caffe中的FCN示例,并且它们使用Deconvolution Caffe图层。此外,您可以阅读相关的paper以获得有关反卷积的更深入解释。

请注意,Deconvolution并非总是双线性插值。它通常通过插值初始化,但随后在训练期间(向后传播)学习。