我知道以下公式可用于将RGB图像转换为YUV图像。在下面的公式中,R,G,B,Y,U,V都是8位无符号整数,中间值是16位无符号整数。
Y = ( ( 66 * R + 129 * G + 25 * B + 128) >> 8) + 16
U = ( ( -38 * R - 74 * G + 112 * B + 128) >> 8) + 128
V = ( ( 112 * R - 94 * G - 18 * B + 128) >> 8) + 128
但是当在OpenCL中使用公式时,这是一个不同的故事 1. 8位内存写访问是一个可选扩展,这意味着一些OpenCL实现可能不支持它 2.即使支持上述扩展,与32位写访问相比,它也是致命的慢。
为了获得更好的性能,每4个像素将同时处理,因此输入为12个8位整数,输出为3个32位无符号整数(第一个代表4个Y样本,第二个代表4个U样本,最后一个代表4个样本。
我的问题是如何直接从12个8位整数中获取这3个32位整数?是否有一个公式来获得这3个32位整数,或者我只需要使用旧公式得到12个8位整数结果(4 Y,4 U,4 V)并用位构造3个32位整数 - 运作?
答案 0 :(得分:9)
即使2年前问过这个问题,我认为一些工作代码会对此有所帮助。对于直接访问8位值时最初关注性能不佳的问题,最好在可能的情况下执行32位直接访问。
前段时间我开发并使用以下OpenCL内核将ARGB(典型的windows位图像素布局)转换为y平面(全尺寸),u / v半平面(四分之一大小)内存布局为libx264编码的输入。
__kernel void ARGB2YUV (
__global unsigned int * sourceImage,
__global unsigned int * destImage,
unsigned int srcHeight,
unsigned int srcWidth,
unsigned int yuvStride // must be srcWidth/4 since we pack 4 pixels into 1 Y-unit (with 4 y-pixels)
)
{
int i,j;
unsigned int RGBs [ 4 ];
unsigned int posSrc, RGB, Value4 = 0, Value, yuvStrideHalf, srcHeightHalf, yPlaneOffset, posOffset;
unsigned char red, green, blue;
unsigned int posX = get_global_id(0);
unsigned int posY = get_global_id(1);
if ( posX < yuvStride ) {
// Y plane - pack 4 y's within each work item
if ( posY >= srcHeight )
return;
posSrc = (posY * srcWidth) + (posX * 4);
RGBs [ 0 ] = sourceImage [ posSrc ];
RGBs [ 1 ] = sourceImage [ posSrc + 1 ];
RGBs [ 2 ] = sourceImage [ posSrc + 2 ];
RGBs [ 3 ] = sourceImage [ posSrc + 3 ];
for ( i=0; i<4; i++ ) {
RGB = RGBs [ i ];
blue = RGB & 0xff; green = (RGB >> 8) & 0xff; red = (RGB >> 16) & 0xff;
Value = ( ( 66 * red + 129 * green + 25 * blue ) >> 8 ) + 16;
Value4 |= (Value << (i * 8));
}
destImage [ (posY * yuvStride) + posX ] = Value4;
return;
}
posX -= yuvStride;
yuvStrideHalf = yuvStride >> 1;
// U plane - pack 4 u's within each work item
if ( posX >= yuvStrideHalf )
return;
srcHeightHalf = srcHeight >> 1;
if ( posY < srcHeightHalf ) {
posSrc = ((posY * 2) * srcWidth) + (posX * 8);
RGBs [ 0 ] = sourceImage [ posSrc ];
RGBs [ 1 ] = sourceImage [ posSrc + 2 ];
RGBs [ 2 ] = sourceImage [ posSrc + 4 ];
RGBs [ 3 ] = sourceImage [ posSrc + 6 ];
for ( i=0; i<4; i++ ) {
RGB = RGBs [ i ];
blue = RGB & 0xff; green = (RGB >> 8) & 0xff; red = (RGB >> 16) & 0xff;
Value = ( ( -38 * red + -74 * green + 112 * blue ) >> 8 ) + 128;
Value4 |= (Value << (i * 8));
}
yPlaneOffset = yuvStride * srcHeight;
posOffset = (posY * yuvStrideHalf) + posX;
destImage [ yPlaneOffset + posOffset ] = Value4;
return;
}
posY -= srcHeightHalf;
if ( posY >= srcHeightHalf )
return;
// V plane - pack 4 v's within each work item
posSrc = ((posY * 2) * srcWidth) + (posX * 8);
RGBs [ 0 ] = sourceImage [ posSrc ];
RGBs [ 1 ] = sourceImage [ posSrc + 2 ];
RGBs [ 2 ] = sourceImage [ posSrc + 4 ];
RGBs [ 3 ] = sourceImage [ posSrc + 6 ];
for ( i=0; i<4; i++ ) {
RGB = RGBs [ i ];
blue = RGB & 0xff; green = (RGB >> 8) & 0xff; red = (RGB >> 16) & 0xff;
Value = ( ( 112 * red + -94 * green + -18 * blue ) >> 8 ) + 128;
Value4 |= (Value << (i * 8));
}
yPlaneOffset = yuvStride * srcHeight;
posOffset = (posY * yuvStrideHalf) + posX;
destImage [ yPlaneOffset + (yPlaneOffset >> 2) + posOffset ] = Value4;
return;
}
此代码仅执行全局32位内存访问,而在每个工作项中进行8位处理。
哦..以及调用内核的正确代码
unsigned int width = 1024;
unsigned int height = 768;
unsigned int frameSize = width * height;
const unsigned int argbSize = frameSize * 4; // ARGB pixels
const unsigned int yuvSize = frameSize + (frameSize >> 1); // Y,U,V planes
const unsigned int yuvStride = width >> 2; // since we pack 4 RGBs into "one" YYYY
// Allocates ARGB buffer
ocl_rgb_buffer = clCreateBuffer ( context, CL_MEM_READ_WRITE, argbSize, 0, &error );
// ... error handling ...
ocl_yuv_buffer = clCreateBuffer ( context, CL_MEM_READ_WRITE, yuvSize, 0, &error );
// ... error handling ...
error = clSetKernelArg ( kernel, 0, sizeof(cl_mem), &ocl_rgb_buffer );
error |= clSetKernelArg ( kernel, 1, sizeof(cl_mem), &ocl_yuv_buffer );
error |= clSetKernelArg ( kernel, 2, sizeof(unsigned int), &height);
error |= clSetKernelArg ( kernel, 3, sizeof(unsigned int), &width);
error |= clSetKernelArg ( kernel, 4, sizeof(unsigned int), &yuvStride);
// ... error handling ...
const size_t local_ws[] = { 16, 16 };
const size_t global_ws[] = { yuvStride + (yuvStride >> 1), height };
error = clEnqueueNDRangeKernel ( queue, kernel, 2, NULL, global_ws, local_ws, 0, NULL, NULL );
// ... error handling ...
注意:看一下工作项计算。需要添加一些额外的代码(例如,使用mod以添加足够的备用项)以确保工作项大小适合本地工作大小。
答案 1 :(得分:2)
喜欢这个?除非您的平台可以使用int3,否则请使用int4。你也可以将5个像素打包成一个int16,这样你就浪费了1/16而不是内存带宽的1/4。
__kernel void rgb2yuv( __global int3* input, __global int3* output){
rgb = input[get_global_id(0)];
R = rgb.x;
G = rgb.y;
B = rgb.z;
yuv.x = ( ( 66 * R + 129 * G + 25 * B + 128) >> 8) + 16;
yuv.y = ( ( -38 * R - 74 * G + 112 * B + 128) >> 8) + 128;
yuv.z = ( ( 112 * R - 94 * G - 18 * B + 128) >> 8) + 128;
output[get_global_id(0)] = yuv;
}
答案 2 :(得分:2)
与opencl specification数据类型int3一起不存在。
第123页:
支持的n值为2,4,8和16 ...
在您的内核变量rgb
中,R
,G
,B
和yuv
至少应为__private int4
。
OpenCL 1.1增加了typen
n = 3
的支持。但是,我强烈建议您不要使用它。不同的供应商实现有不同的错误,并没有为您节省任何东西。