我试图通过使用描述here的Cardano方法找到由一组四个系数定义的三次方程的实根。问题是,我实现的根源实际上并不起作用 - 通过将它们插入等式中进行测试会产生一个重大错误(超过所需的10 ^ -6)。算法是否实现错误,或者错误是由其他原因造成的,例如舍入精度?
static double CubicRoot(double n)
{
return Math.Pow(Math.Abs(n), 1d / 3d) * Math.Sign(n);
}
public static List<double> SolveCubic(double A, double B = 0, double C = 0, double D = 0)
{
List<double> output = new List<double>();
if (A != 0)
{
double A1 = B / A;
double A2 = C / A;
double A3 = D / A;
double P = -((A1 * A1) / 3) + A2;
double Q = ((2.0 * A1 * A1 * A1) / 27.0) - ((A1 * A2) / 3.0) + A3;
double cubeDiscr = Q * Q / 4.0 + P * P * P / 27.0;
if (cubeDiscr > 0)
{
double u = CubicRoot(-Q / 2.0 + Math.Sqrt(cubeDiscr));
double v = CubicRoot(-Q / 2.0 - Math.Sqrt(cubeDiscr));
output.Add(u + v - (A1 / 3.0));
return output;
}
else if (cubeDiscr == 0)
{
double u = CubicRoot(-Q / 2.0);
output.Add(2u - (A1 / 3.0));
output.Add(-u - (A1 / 3.0));
}
else if (cubeDiscr < 0)
{
double r = CubicRoot(Math.Sqrt(-(P * P * P / 27.0)));
double alpha = Math.Atan(Math.Sqrt(-cubeDiscr) / (-Q / 2.0));
output.Add(r * (Math.Cos(alpha / 3.0) + Math.Cos((6 * Math.PI - alpha) / 3.0)) - A1 / 3.0);
output.Add(r * (Math.Cos((2 * Math.PI + alpha) / 3.0) + Math.Cos((4 * Math.PI - alpha) / 3.0)) - A1 / 3.0);
output.Add(r * (Math.Cos((4 * Math.PI + alpha) / 3.0) + Math.Cos((2 * Math.PI - alpha) / 3.0)) - A1 / 3.0);
}
}
return output;
}
答案 0 :(得分:2)
一些事情
Math.Sign
将在零上返回零,在这种情况下恰好是您想要的,但也许您对代码或算法更改并不是那么幸运。 cubeDiscr == 0
分支。由于同样的原因,您可能有舍入问题并执行了错误的> 0
和< 0
分支。在零之间测试(参见下文)。 cubeDiscr == 0
分支是错误的,因为1)您没有计算v
和2)2u
是UInt32
,其值为2,而不是2*u
。 计算alpha:
double alpha = Math.Atan(Math.Sqrt(-cubeDiscr) / (-Q / 2.0));
与
不同double alpha = Math.Atan(Math.Sqrt(-d) / q * 2.0);
if (q > 0) // if q > 0 the angle becomes PI + alpha
alpha = Math.PI + alpha;
使用该页面中包含的代码有什么问题?
public double Xroot(double a, double x)
{
double i = 1;
if (a < 0)
i = -1;
return (i * Math.Exp( Math.Log(a*i)/x));
}
public int Calc_Cardano() // solve cubic equation according to cardano
{
double p, q, u, v;
double r, alpha;
int res;
res = 0;
if (a1 != 0)
{
a = b / a1;
b = c / a1;
c = d / a1;
p = -(a * a / 3.0) + b;
q = (2.0 / 27.0 * a * a * a) - (a * b / 3.0) + c;
d = q * q / 4.0 + p * p * p / 27.0;
if (Math.Abs(d) < Math.Pow(10.0, -11.0))
d = 0;
// 3 cases D > 0, D == 0 and D < 0
if (d > 1e-20)
{
u = Xroot(-q / 2.0 + Math.Sqrt(d), 3.0);
v = Xroot(-q / 2.0 - Math.Sqrt(d), 3.0);
x1.real = u + v - a / 3.0;
x2.real = -(u + v) / 2.0 - a / 3.0;
x2.imag = Math.Sqrt(3.0) / 2.0 * (u - v);
x3.real = x2.real;
x3.imag = -x2.imag;
res = 1;
}
if (Math.Abs(d) <= 1e-20)
{
u = Xroot(-q / 2.0, 3.0);
v = Xroot(-q / 2.0, 3.0);
x1.real = u + v - a / 3.0;
x2.real = -(u + v) / 2.0 - a / 3.0;
res = 2;
}
if (d < -1e-20)
{
r = Math.Sqrt(-p * p * p / 27.0);
alpha = Math.Atan(Math.Sqrt(-d) / q * 2.0);
if (q > 0) // if q > 0 the angle becomes PI + alpha
alpha = Math.PI + alpha;
x1.real = Xroot(r, 3.0) * (Math.Cos((6.0 * Math.PI - alpha) / 3.0) + Math.Cos(alpha / 3.0)) - a / 3.0;
x2.real = Xroot(r, 3.0) * (Math.Cos((2.0 * Math.PI + alpha) / 3.0) + Math.Cos((4.0 * Math.PI - alpha) / 3.0)) - a / 3.0;
x3.real = Xroot(r, 3.0) * (Math.Cos((4.0 * Math.PI + alpha) / 3.0) + Math.Cos((2.0 * Math.PI - alpha) / 3.0)) - a / 3.0;
res = 3;
}
}
else
res = 0;
return res;
}