我为tensorflow中的最小数据集编写了两个版本代码。第一个与输入的示例代码类似[无,784] 然而,第二部分是我改变的。我只是将输入比例修改为[784,无]并更改一些相应的矩阵格式。 我对结果的不同感到困惑。我是tensorflow的初学者。真的想要你的帮助。
由于
import tensorflow as tf
import tensorflow.examples.tutorials.mnist.input_data as input_data
mnist = input_data.read_data_sets(r"C:\Ruigy\NN\minst", one_hot=True)
def hidden_layer(X, sizeOutput, non_linear_name = ''):
sizeInput = X.shape[1]
W = tf.Variable(tf.zeros([sizeInput,sizeOutput]))
B = tf.Variable(tf.zeros([sizeOutput]))
Y = tf.matmul(X,W) + B
if non_linear_name == '': return Y
elif non_linear_name == 'softmax': A = tf.nn.softmax(Y)
elif non_linear_name == 'ReLU': A = tf.nn.relu(Y)
return A
X = tf.placeholder(tf.float32, [None, 784],name = 'Input')
Y_LABEL = tf.placeholder(tf.float32, [None, 10], name = 'Label')
Y_linear= hidden_layer(X,Y_LABEL.shape[1])
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=Y_LABEL,
logits=Y_linear))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
for _ in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={X: batch_xs, Y_LABEL: batch_ys})
correct_prediction = tf.equal(tf.argmax(Y_linear, 1), tf.argmax(Y_LABEL, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(sess.run(accuracy, feed_dict={X: mnist.test.images, Y_LABEL: mnist.test.labels}))
结果是0.9188
import tensorflow as tf
import tensorflow.examples.tutorials.mnist.input_data as input_data
mnist = input_data.read_data_sets(r"C:\Ruigy\NN\minst", one_hot=True)
def hidden_layer(X, sizeOutput, non_linear_name = ''):
sizeInput = X.shape[0]
W = tf.Variable(tf.zeros([sizeInput,sizeOutput]))
B = tf.Variable(tf.zeros([sizeOutput,1]))
Y = tf.matmul(W,X,True) + B
if non_linear_name == '': return Y
elif non_linear_name == 'softmax': A = tf.nn.softmax(Y)
elif non_linear_name == 'ReLU': A = tf.nn.relu(Y)
return A
X = tf.placeholder(tf.float32, [784,None],name = 'Input')
Y_LABEL = tf.placeholder(tf.float32, [10,None], name = 'Label')
Y_linear= hidden_layer(X,Y_LABEL.shape[0])
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=Y_LABEL,
logits=Y_linear))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
for _ in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={X: batch_xs.T, Y_LABEL: batch_ys.T})
correct_prediction = tf.equal(tf.argmax(Y_linear, 0), tf.argmax(Y_LABEL, 0))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(sess.run(accuracy, feed_dict={X: mnist.test.images.T, Y_LABEL: mnist.test.labels.T}))
结果是0.6638
我真的很困惑。我哪里错了?我只是想改变格式。
答案 0 :(得分:0)
数据采用与数据集中给出的格式相同的格式。如果要更改格式,请在分配给占位符后为输入取一个tf.tranpose()