我想使用梯度下降来解决方程组,但每次都得到错误的结果,所以我检查了我的代码并写了一个numpy版本,在这个版本中我提供了明确的损失梯度,我可以获得当前的结果。< /强>
所以我不明白为什么GradientDescentOptimizer无法工作。
这是我没有tf的代码:
import numpy as np
class SolveEquation:
def __init__(self, rate: float, loss_threshold: float=0.0001, max_epochs: int=1000):
self.__rate = rate
self.__loss_threshold = loss_threshold
self.__max_epochs = max_epochs
self.__x = None
def solve(self, coefficients, b):
_a = np.array(coefficients)
_b = np.array(b).reshape([len(b), 1])
_x = np.zeros([_a.shape[1], 1])
for epoch in range(self.__max_epochs):
grad_loss = np.matmul(np.transpose(_a), np.matmul(_a, _x) - _b)
_x -= self.__rate * grad_loss
if epoch % 10 == 0:
loss = np.mean(np.square(np.subtract(np.matmul(_a, _x), _b)))
print('loss = {:.8f}'.format(loss))
if loss < self.__loss_threshold:
break
return _x
s = SolveEquation(0.1, max_epochs=1)
print(s.solve([[1, 2], [1, 3]], [3, 4]))
以下是我的代码:tf:
import tensorflow as tf
import numpy as np
class TFSolveEquation:
def __init__(self, rate: float, loss_threshold: float=0.0001, max_epochs: int=1000):
self.__rate = rate
self.__loss_threshold = tf.constant(loss_threshold)
self.__max_epochs = max_epochs
self.__session = tf.Session()
self.__x = None
def __del__(self):
try:
self.__session.close()
finally:
pass
def solve(self, coefficients, b):
coefficients_data = np.array(coefficients)
b_data = np.array(b)
_a = tf.placeholder(tf.float32)
_b = tf.placeholder(tf.float32)
_x = tf.Variable(tf.zeros([coefficients_data.shape[1], 1]))
loss = tf.reduce_mean(tf.square(tf.matmul(_a, _x) - _b))
optimizer = tf.train.GradientDescentOptimizer(self.__rate)
model = optimizer.minimize(loss)
self.__session.run(tf.global_variables_initializer())
for epoch in range(self.__max_epochs):
self.__session.run(model, {_a: coefficients_data, _b: b_data})
if epoch % 10 == 0:
if self.__session.run(loss < self.__loss_threshold, {_a: coefficients_data, _b: b_data}):
break
return self.__session.run(_x)
s = TFSolveEquation(0.1, max_epochs=1)
print(s.solve([[1, 2], [1, 3]], [3, 4]))
我用非常简单的方程组测试这两个代码:
x_1 + 2 * x_2 = 3
x_1 + 3 * x_3 = 4
loss = 1/2 * || Ax - b ||^2
Init x_1 = 0, x_2 = 0, rate = 0.1
使用渐变下降 因此,在第一次计算时,delta x =(0.7,1.8)
但不幸的是我的代码用tf给出了
delta x =
[[ 0.69999999]
[ 1.75 ]]
我的代码没有提供
delta x =
[[ 0.7]
[ 1.8]]
没有tf的绝对代码是正确的,但为什么tf计算梯度可能会小于0.05然后是当前结果? 我认为这是我没有tf的代码可以解决方程组的原因,但是tf版本目前无法解决方程组。
有人可以告诉我为什么要给出一个渐变的渐变?感谢
我的平台是Win10 + tensorflow-gpu v1.0
答案 0 :(得分:2)
您忘记在张量流实施中重塑_b
。因此,您要从此行的列中减去一行:loss = tf.reduce_mean(tf.square(tf.matmul(_a, _x) - _b))
。
编辑:在不指定缩减轴的情况下,不要使用缩减操作(例如均值或求和)。默认情况下,numpy和tensorflow中的缩减操作会沿着所有维度减少,因此无论输入数组的大小如何,您都会获得单个数字。这可能导致许多模糊不清的错误。