我有兴趣计算数量:
其中 x_i 是1xD向量(维度D的N个数据中的一个),μ是DxK矩阵, W 是K DxD矩阵列表。
这应该导致1XK向量。我以下列方式尝试所有N和K:
res = zeros(N,K);
for i in 1:N
for k in 1:K
res[i,k] = (x_matrix[i,:]-mus_matrix[:,k])'*
w_matrix[k]*(x_matrix[i,:]-mus_matrix[:,k])
如果我尝试对其进行矢量化,请使用以下内容:
res = zeros(N,K);
for i in 1:N
res[i,:] = (x_matrix[i,:].-mus_matrix)'.*w_matrix.*(x_matrix[i,:].-mus_matrix)
我收到以下错误:
ERROR: DimensionMismatch("arrays could not be broadcast to a common size")
Stacktrace:
[1] _bcs1(::Base.OneTo{Int64}, ::Base.OneTo{Int64}) at ./broadcast.jl:70
[2] _bcs at ./broadcast.jl:63 [inlined]
[3] broadcast_shape(::Tuple{Base.OneTo{Int64},Base.OneTo{Int64}}, ::Tuple{Base.OneTo{Int64}}, ::Tuple{Base.OneTo{Int64},Base.OneTo{Int64}}, ::Vararg{Tuple{Base.OneTo{Int64},Base.OneTo{Int64}},N} where N) at ./broadcast.jl:57 (repeats 3 times)
[4] broadcast_indices(::Array{Float64,2}, ::Array{Any,1}, ::Array{Float64,1}, ::Vararg{Any,N} where N) at ./broadcast.jl:53
[5] broadcast_c(::Function, ::Type{Array}, ::Array{Float64,2}, ::Array{Any,1}, ::Vararg{Any,N} where N) at ./broadcast.jl:311
[6] broadcast(::Function, ::Array{Float64,2}, ::Array{Any,1}, ::Array{Float64,1}, ::Vararg{Any,N} where N) at ./broadcast.jl:434
以下是一个例子:
julia> N = 5
5
julia> D=2
2
julia> K = 4
4
julia> W=[]
0-element Array{Any,1}
julia> x = rand(N,D)
5×2 Array{Float64,2}:
0.576477 0.9575
0.184454 0.660436
0.470267 0.729649
0.648879 0.782561
0.626453 0.111332
julia> mu = rand(K,D)
4×2 Array{Float64,2}:
0.989281 0.00126782
0.659106 0.66136
0.50843 0.289442
0.327962 0.523229
julia> for i in 1:K
push!(W,rand(D,D))
end
然后运行
julia> (x_matrix[i,:]-mus_matrix[:,k])'*
w_matrix[k]*(x_matrix[i,:]-mus_matrix[:,k])
34649.850360744866
但是第二个代码
julia> (x_matrix[i,:].-mus_matrix)'.*w_matrix.*(x_matrix[i,:].-mus_matrix)
ERROR: DimensionMismatch("arrays could not be broadcast to a common size")
Stacktrace:
[1] _bcs1(::Base.OneTo{Int64}, ::Base.OneTo{Int64}) at ./broadcast.jl:70
[2] _bcs at ./broadcast.jl:63 [inlined]
[3] broadcast_shape(::Tuple{Base.OneTo{Int64},Base.OneTo{Int64}}, ::Tuple{Base.OneTo{Int64}}, ::Tuple{Base.OneTo{Int64},Base.OneTo{Int64}}, ::Vararg{Tuple{Base.OneTo{Int64},Base.OneTo{Int64}},N} where N) at ./broadcast.jl:57 (repeats 3 times)
[4] broadcast_indices(::Array{Float64,2}, ::Array{Any,1}, ::Array{Float64,1}, ::Vararg{Any,N} where N) at ./broadcast.jl:53
[5] broadcast_c(::Function, ::Type{Array}, ::Array{Float64,2}, ::Array{Any,1}, ::Vararg{Any,N} where N) at ./broadcast.jl:311
[6] broadcast(::Function, ::Array{Float64,2}, ::Array{Any,1}, ::Array{Float64,1}, ::Vararg{Any,N} where N) at ./broadcast.jl:434
答案 0 :(得分:1)
TL / DR:下面的优化变体,但Einsum看起来更好,恕我直言。
看起来像是使用Einstein summation notation的情况。在朱莉娅,Einsum.jl
可以做到这一点:
julia> N = 5
5
julia> D = 3
3
julia> K = 10
10
julia> x = rand(N, D)
5×3 Array{Float64,2}:
0.587436 0.210529 0.261725
0.527269 0.457477 0.482939
0.52726 0.411209 0.138872
0.89107 0.464789 0.758392
0.885267 0.931014 0.672959
julia> μ = rand(D, K)
3×10 Array{Float64,2}:
0.280792 0.265066 0.81437 0.503377 0.0717916 … 0.275872 0.609961 0.0820088 0.0042564
0.0177643 0.0959438 0.563948 0.332433 0.088527 0.691971 0.0296638 0.604488 0.956057
0.668128 0.444816 0.74203 0.518232 0.48689 0.465067 0.117469 0.729514 0.109973
julia> W = rand(K, D, D)
10×3×3 Array{Float64,3}:
[:, :, 1] =
0.320861 0.662103 0.219234
0.780944 0.769377 0.566203
0.466207 0.428527 0.330901
0.15534 0.035435 0.346737
0.810676 0.328116 0.469505
0.676575 0.668204 0.285334
0.455551 0.211295 0.85295
0.229995 0.741487 0.783361
0.0937583 0.401419 0.47032
0.956335 0.434213 0.967791
[:, :, 2] =
0.275903 0.130298 0.184485
0.941648 0.940107 0.439454
0.425292 0.252654 0.797115
0.0203406 0.594075 0.484809
0.164309 0.941597 0.455314
0.73628 0.109502 0.920664
0.906305 0.177235 0.540193
0.360038 0.0486971 0.20626
0.914357 0.699901 0.295872
0.284143 0.659117 0.291479
[:, :, 3] =
0.138311 0.921371 0.353719
0.345247 0.70865 0.246736
0.361364 0.636543 0.343837
0.752149 0.581561 0.346399
0.705888 0.24765 0.703952
0.992327 0.369668 0.109407
0.341624 0.223715 0.970667
0.762169 0.94248 0.917569
0.0367128 0.589345 0.121106
0.826602 0.692111 0.229499
julia> using Einsum
julia> @einsum r[n,k] := (x[n,i] - μ[i,k]) * W[k,i,j] * (x[n,j] - μ[j,k])
julia> r
5×10 Array{Float64,2}:
0.0176889 0.087092 0.522184 0.0417967 … -0.0430999 0.041266 -0.0596579 0.432076
0.0521066 0.364059 0.181515 0.00434307 -0.0248712 0.226976 -0.0686294 0.437169
-0.0472136 0.127803 0.458812 0.0119074 0.0391649 -0.0190299 -0.0585371 0.264379
0.468634 1.16498 -0.00263205 0.192809 0.273537 1.13787 -0.0653081 1.41321
0.749655 2.20266 0.0205068 0.420249 0.573358 1.42499 0.441232 1.67574
哪个@macroexpand
基本上是以下循环(加上准备和边界检查):
begin
local k
for k = 1:size(μ, 2)
begin
local n
for n = 1:size(x, 1)
begin
local s = zero(T)
begin
local j
for j = 1:size(W, 3)
begin
local i
for i = 1:size(x, 2)
s += (x[n, i] - μ[i, k]) * W[k, i, j] * (x[n, j] - μ[j, k])
end
end
end
end
r[n, k] = s
end
end
end
end
end
现在,为了找到更高效的东西,我使用BenchmarkTools.jl
比较了几个变体。您可以在我的笔记本电脑here上查看完整的代码和结果。它表明Einsum变体实际上已经比原来更好了:
# Original:
# memory estimate: 1017.73 MiB
# allocs estimate: 3429967
# median time: 361.982 ms (15.94% GC)
# Einsum:
# memory estimate: 2.64 MiB
# allocs estimate: 76
# median time: 127.536 ms (0.00% GC)
到目前为止,效率最高且分配最少的变体如下,需要x = x'
和W = permutedims(W, [2, 3, 1])
(假设您可以轻松更改您的表示形式):
function test_optimized!(res, x, μ, W)
z = zero(eltype(x))
for k = 1:size(μ, 1)
for n = 1:size(x, 1)
res[n, k] = z
for i = 1:size(W, 1)
for j = 1:size(W, 2)
@inbounds res[n, k] += (x[i, n] - μ[i, k]) * W[i, j, k] * (x[j, n] - μ[j, k])
end
end
end
end
end
function test_optimized(x, μ, W)
res = zeros(N, K)
test_optimized!(res, x, μ, W)
res
end
这将我们带到了
# memory estimate: 2.63 MiB
# allocs estimate: 2
# median time: 521.215 μs (0.00% GC)
它使用了一些可以找到的“技巧”in the docs:在一个单独的方法中填充预分配的矩阵,按列主要顺序访问步幅,并使用@inbounds
(虽然这只会改进大约一微秒的东西。)
还有TensorOperations.jl
,我认为它会更加智能化,但它失败了:
julia> @tensor r[n,k] := (x[n,i] - μ[i,k]) * W[k,i,j] * (x[n,j] - μ[j,k])
ERROR: TensorOperations.IndexError{String}("invalid index specification: (:n, :i) to (:i, :k)")
Stacktrace:
[1] add_indices(::Tuple{Symbol,Symbol}, ::Tuple{Symbol,Symbol}) at /home/philipp/.julia/v0.6/TensorOperations/src/implementation/indices.jl:22
[2] + at /home/philipp/.julia/v0.6/TensorOperations/src/indexnotation/sum.jl:40 [inlined]
[3] -(::TensorOperations.IndexedObject{(:n, :i),:N,Array{Float64,2},Int64}, ::TensorOperations.IndexedObject{(:i, :k),:N,Array{Float64,2},Int64}) at /home/philipp/.julia/v0.6/TensorOperations/src/indexnotation/sum.jl:44
我认为这是故意的,与效率有关,请参阅this issue。