引用pandas中的parent属性

时间:2018-03-20 15:37:05

标签: python pandas data-science-experience

这是我的json

$combined = array_merge($digits, $results);

foreach (array_unique($dogrularVeSiklar) as $single) : { ?>
    {
        echo $single.'<br>';
        echo $results->userName;
    },
}

如果我这样做:

{
    "fInstructions": [
        {
            "id": 155,
            "type":"finstruction",
            "ref": "/spm/finstruction/155",
            "iLineItem":[
                {
                    "id": 156,
                    "type":"ilineitem",
                    "ref": "/spm/ilineitem/156",
                    "creationDate": "2018-03-09",
                    "dueDate":"2018-02-01",
                    "effectiveDate":"2018-03-09",
                    "frequency":"01",
                    "coveredPeriodFrom":"2018-02-28",
                    "coveredPeriodTo":"2018-02-28",
                    "statusCode":"PRO",
                    "amount": 6
                },
                {
                    "id": 157,
                    "type":"ilineitem",
                    "ref": "/spm/ilineitem/157",
                    "creationDate": "2018-03-09",
                    "dueDate":"2018-02-01",
                    "effectiveDate":"2018-03-09",
                    "frequency":"01",
                    "coveredPeriodFrom":"2018-03-01",
                    "coveredPeriodTo":"2018-03-31",
                    "statusCode":"PRO",
                    "amount": 192
                }
            ]
        }
    ]
}

我按预期得到了两行所有ILI。但是,我还想拥有父属性id,在结果集中输入。为此,我尝试:

json_normalize(data['fInstructions'], record_path=['iLineItem'])

然后我得到:     ValueError:冲突的元数据名称id,需要区分前缀

所以我试试:

json_normalize(df_data_1['fInstructions'], record_path=['iLineItem'], meta=['id', 'type'])

这给了我:

json_normalize(df_data_1['fInstructions'], record_path=['iLineItem'], meta=['fInstructions.id'])

1 个答案:

答案 0 :(得分:0)

答案是:

json_normalize(df_data_1['fInstructions'], record_path=['iLineItem'], meta='id', record_prefix='ils.')