我正在尝试使用窗口函数估计数据子样本的midas回归。但是,当我使用它时,midas_r函数会将我返回到prepmidas_r中的"错误(y,X,mt,Zenv,cl,args,start,Ofunction,weight_gradients,: 必须提供重量参数的起始值"错误
install.packages("midasr")
library(midasr)
yrs <- 10
x <- ts(rnorm(12*yrs),start=c(1900,1),frequency = 12)
y <- ts(rnorm(yrs),start=c(1900,1))
midas_r(y~fmls(x,3,12,nealmon),start=list(x=rep(0,3)))
x_est <- window(x,end=c(1910,0))
y_est <- window(y,end=(1910))
midas_r(y_est~fmls(x_est,3,12,nealmon)+1,start=list(x=rep(0,3)))
有谁知道这个问题是什么?提前谢谢!
答案 0 :(得分:0)
问题出在library(tidyverse)
## pseudocode
## for the first set of files build a reference
ref1 <- first_set %>%
select(name1, name2, station_id) %>%
distinct() %>% # unique combinations
mutate(new_id = ....) # add regex or formattinf
## for the second set of files build a reference
ref2 <- second_set %>%
select(name1, name2, other_station_id) %>%
distinct() %>% # unique combinations
mutate(new__id = .... ) # add regex or formatting or whatever
## now join the reference to get a cross reference table
## missing entries wil have NA.
ref <- full_join(ref1, ref2, by = "new_id")
## when your refernce table is looking clean then you can append the new ids
ref1 <- ref1 %>%
left_join(ref, by = c("name1", "name2", "station_id")) %>%
select(- ) ## use - to drop values not needed
ref2 <- ref2 %>%
left_join(ref, by=c("name1", "name2", "other_station_id" )) %>%
select(- ) ## use - to drop values not neede
。确实要列出此列表,但此名称需要与变量名称一致。因此,
list(x=rep(0, 3))
作品。