我正在尝试创建自己的自定义python层来计算网络准确性(在Phase:TEST中使用)。
我的问题:它是否仍然具有所有这四个功能:
转发 - 图层的输入和输出是什么
向后 - 给定下一层的预测和渐变,计算前一层的渐变
重塑 - 根据需要重塑您的blob
如果是,为什么?我只想在TEST阶段使用它并计算准确性,而不是在学习中(前进和后退似乎是用于训练)。
谢谢大家!
答案 0 :(得分:1)
虽然我不确定如果你没有定义所有这四种方法,Caffe可能会输出错误,你肯定需要设置和转发:
以下是精度图层的示例:
# Remark: This class is designed for a binary problem with classes '0' and '1'
# Saving this file as accuracyLayer.py
import caffe
TRAIN = 0
TEST = 1
class Accuracy_Layer(caffe.Layer):
#Setup method
def setup(self, bottom, top):
#We want two bottom blobs, the labels and the predictions
if len(bottom) != 2:
raise Exception("Wrong number of bottom blobs (prediction and label)")
#Initialize some attributes
self.correctPredictions = 0.0
self.totalImgs = 0
#Forward method
def forward(self, bottom, top):
#The order of these depends on the prototxt definition
predictions = bottom[0].data
labels = bottom[1].data
self.totalImgs += len(labels)
for i in range(len(labels)): #len(labels) is equal to the batch size
pred = predictions[i] #pred is a tuple with the normalized probability
#of a sample i.r.t. two classes
lab = labels[i]
if pred[0] > pred[1]: #this means it was predicted as class 0
if lab == 0.0:
self.correctPredictions += 1.0
else: #else, predicted as class 1
if lab == 1.0:
self.correctPredictions += 1.0
acc = correctPredictions / self.totalImgs
#output data to top blob
top[0].data = acc
def reshape(self, bottom, top):
"""
We don't need to reshape or instantiate anything that is input-size sensitive
"""
pass
def backward(self, bottom, top):
"""
This layer does not back propagate
"""
pass
以及如何在原型文件中定义它。您可以在此处向Caffe说明此层将仅在TEST阶段出现:
layer {
name: "metrics"
type: "Python"
top: "Acc"
top: "FPR"
top: "FNR"
bottom: "prediction" #let's suppose we have these two bottom blobs
bottom: "label"
python_param {
module: "accuracyLayer"
layer: "Accuracy_Layer"
}
include {
phase: TEST. #This will ensure it will only be executed in TEST phase
}
}
BTW,I've written a gist有一个更复杂的精确python层示例,可能就是你要找的。 p>