Python Pandas按日期分割浮动系列

时间:2018-03-08 09:33:07

标签: python python-3.x pandas series pandas-groupby

我有一个这种格式的熊猫系列:

    date
2017-03-15     1236.43
2017-03-16     1118.96
2017-03-17     1063.48
2017-03-18      940.18
2017-03-19      967.31
2017-03-20     1005.05
2017-03-21     1043.87
2017-03-22      997.78
2017-03-23     1022.02
2017-03-24      927.35
2017-03-25      890.43
2017-03-26      946.65
2017-03-27      961.80
2017-03-28     1015.45
               ...  
2018-03-06    10589.28
2018-03-07     9470.73
2018-03-08     9534.02
Name: BTC, Length: 1382, dtype: float64

我无法找到一个很好的方法来按月拆分,我已经尝试过groupby,它给了我一个非常好的输出,但它也汇集了不同年份的数据,这是一个问题

IN[]: dflist_BTC = []
for group in data.BTC.groupby(df.index.month):
    dflist_BTC.append(group[1])

print(dflist_BTC)

OUT[]: [date
2018-01-01    12877.67
2018-01-02    12934.16
2018-01-03    14579.71
2018-01-04    14244.67
              ...
2018-01-28    11407.94
2018-01-29    11089.52
2018-01-30     9871.21
2018-01-31     9698.13
Name: BTC, dtype: float64, date
2018-02-01     8726.95
2018-02-02     7786.20
2018-02-03     8194.68
               ...
2018-02-27    10154.24
2018-02-28    10303.14
Name: BTC, dtype: float64, date
2017-03-15     1236.43
2017-03-16     1118.96
2017-03-17     1063.48
2017-03-18      940.18
2017-03-19      967.31
2017-03-20     1005.05
2017-03-21     1043.87
2017-03-22      997.78
2017-03-23     1022.02
2017-03-24      927.35
2017-03-25      890.43
2017-03-26      946.65
2017-03-27      961.80
2017-03-28     1015.45
2017-03-29     1008.34
2017-03-30     1020.93
2017-03-31     1035.18
#Here there is the problem, it combines 2017 and 2018
2018-03-01    10247.56
2018-03-02    10801.45
2018-03-03    11043.12
2018-03-04    11084.01
2018-03-05    11431.55
2018-03-06    10589.28
2018-03-07     9470.73
2018-03-08     9534.02
Name: BTC, dtype: float64, date
2017-04-01    1067.47
2017-04-02    1074.21
              ...
2017-12-30    11962.09
2017-12-31    12359.43
Name: BTC, dtype: float64]

我在Stackoverflow和编码方面都是新手,所以如果我没有以更好的方式解释自己,我很抱歉。如果你能帮助我,我将不胜感激。

1 个答案:

答案 0 :(得分:0)

我认为如果需要分隔DataFrame,可以将groupby对象YYYY-MM转换为dict of DataFrame s:

dfs = dict(tuple(data.BTC.groupby(data.index.strftime('%Y-%m'))))
print (dfs['2017-03'])
2017-03-15    1236.43
2017-03-16    1118.96
2017-03-17    1063.48
2017-03-18     940.18
2017-03-19     967.31
2017-03-20    1005.05
2017-03-21    1043.87
2017-03-22     997.78
2017-03-23    1022.02
2017-03-24     927.35
2017-03-25     890.43
2017-03-26     946.65
2017-03-27     961.80
2017-03-28    1015.45
Name: BTC, dtype: float64