我使用Sklearn计算精确度,召回率和F1分数,得到如下结果:
precision recall f1-score support
0 0.82 0.87 0.84 2517
1 0.86 0.81 0.83 2483
avg / total 0.84 0.84 0.84 5000
我试过这段代码:
print("precision_score: ",precision_score(test_y, predicted))
print("recall_score: ",recall_score(test_y, predicted))
print("f1_score: ",f1_score(test_y, predicted))
它显示标签1的p,r和f1。
precision_score: 0.857692307692
recall_score: 0.808296415626
f1_score: 0.832262077545
但我怎样才能返回avg / total的值?
答案 0 :(得分:3)
记录在案here in the classification_report page:
报告的平均值是一个流行加权的宏观平均值 类(相当于precision_recall_fscore_support的 平均='加权'。)
为了获得平均分,你可以做到:
precision, recall, f1, _ = precision_recall_fscore_support(test_y, predicted,
average='weighted')