我正在尝试比较k-最近邻算法中的不同距离计算方法和不同的投票系统。目前我的问题是,无论我做什么{sciit-learn} precision_recall_fscore_support
方法都能得到与精确度,召回率和fscore完全相同的结果。这是为什么?我在不同的数据集(虹膜,玻璃和葡萄酒)上尝试过它。我究竟做错了什么?到目前为止的代码:
#!/usr/bin/env python3
from collections import Counter
from data_loader import DataLoader
from sklearn.metrics import precision_recall_fscore_support as pr
import random
import math
import ipdb
def euclidean_distance(x, y):
return math.sqrt(sum([math.pow((a - b), 2) for a, b in zip(x, y)]))
def manhattan_distance(x, y):
return sum(abs([(a - b) for a, b in zip(x, y)]))
def get_neighbours(training_set, test_instance, k):
names = [instance[4] for instance in training_set]
training_set = [instance[0:4] for instance in training_set]
distances = [euclidean_distance(test_instance, training_set_instance) for training_set_instance in training_set]
distances = list(zip(distances, names))
print(list(filter(lambda x: x[0] == 0.0, distances)))
sorted(distances, key=lambda x: x[0])
return distances[:k]
def plurality_voting(nearest_neighbours):
classes = [nearest_neighbour[1] for nearest_neighbour in nearest_neighbours]
count = Counter(classes)
return count.most_common()[0][0]
def weighted_distance_voting(nearest_neighbours):
distances = [(1/nearest_neighbour[0], nearest_neighbour[1]) for nearest_neighbour in nearest_neighbours]
index = distances.index(min(distances))
return nearest_neighbours[index][1]
def weighted_distance_squared_voting(nearest_neighbours):
distances = list(map(lambda x: 1 / x[0]*x[0], nearest_neighbours))
index = distances.index(min(distances))
return nearest_neighbours[index][1]
def main():
data = DataLoader.load_arff("datasets/iris.arff")
dataset = data["data"]
# random.seed(42)
random.shuffle(dataset)
train = dataset[:100]
test = dataset[100:150]
classes = [instance[4] for instance in test]
predictions = []
for test_instance in test:
prediction = weighted_distance_voting(get_neighbours(train, test_instance[0:4], 15))
predictions.append(prediction)
print(pr(classes, predictions, average="micro"))
if __name__ == "__main__":
main()
答案 0 :(得分:3)
问题是你正在使用“微观”平均值。
如上所述here:
正如文档中所写:“注意”微观 - 平均“ 在多类设置中将产生相同的精度,召回和 [image:F],而“加权”平均可能产生一个F分数 不是在精确度和召回之间。“ http://scikit-learn.org/stable/modules/model_evaluation.html
但是如果你使用labels参数删除多数标签,那么 微观平均不同于精度,精度不同于 召回。