data (Eq a, Show a) => QT a = C a | Q (QT a) (QT a) (QT a) (QT a)
deriving (Eq, Show)
给出如上定义,写一个谓词来检查给定图像(编码为四叉树)是否相对于垂直轴(水平对称)是对称的。尽可能使用匿名函数。
问题:如何对给定的四叉树实施水平对称检查?
好吧,我正在考虑这样的事情:当四叉树只是叶时,在这种情况下我们有水平对称。基本情况是当四叉树只有一个水平(四个叶子)对称时,只需要检查颜色(c1 == c2 && c3 == c4)
。
在任何其他情况下,我可能会检查这个条件是否递归满足:nw equals (fliphorizontal(ne)) && sw equals (fliphorizontal(se))
,其中fliphorizontal
水平翻转四叉树,equals
检查两个四叉树是平等的。但是我想尽可能避免使用外部函数,如果可能的话只是匿名函数。
ishsymmetric :: (Eq a, Show a) => QT a -> Bool
ishsymmetric (C _) = True
ishsymmetric (Q (C c1) (C c2) (C c3) (C c4)) = c1 == c2 && c3 == c4
ishsymmetric (Q nw ne sw se) =
编辑:翻转示例:
fliph :: (Eq a, Show a) => QT a -> QT a
fliph (C a) = C a
fliph (Q nw ne sw se) = Q (fliph ne) (fliph nw) (fliph se) (fliph sw)
编辑:最终的单功能解决方案(使用四叉树的广义折叠函数):
ishsymmetric :: (Eq a, Show a) => QT a -> Bool
ishsymmetric (C _) = True
ishsymmetric (Q a b c d) = and $ zipWith equals [a,c] [fliph b,fliph d]
where
fold f g (C c) = g c
fold f g (Q a b c d) = f (fold f g a) (fold f g b)
(fold f g c) (fold f g d)
fliph q = fold (\a b c d -> Q b a d c) (\c -> C c) q
equals (C c1) (C c2) = c1 == c2
equals (Q a b c d) (Q e f g h) = and $ zipWith equals [a,b,c,d] [e,f,g,h]
答案 0 :(得分:1)
类似的东西:
ishsymmetric :: (Eq a, Show a) => QT a -> Bool
ishsymmetric (C _) = True
ishsymmetric (Q (C c1) (C c2) (C c3) (C c4)) = c1 == c2 && c3 == c4
ishsymmetric (Q nw ne sw se) = equals nw (fliph ne) && equals sw (fliph se)
where equals (C a) (C b) = a == b
equals (Q a b c d) (Q e f g h) = equals a e && equals b f && equals c g && equals d h
fliph (C a) = C a
fliph (Q nw ne sw se) = Q (fliph ne) (fliph nw) (fliph se) (fliph sw)
但语法优化是可能的。 : - /
答案 1 :(得分:1)
怎么样
ishsymmetric qt = qt == fliph qt