我通过这样做tutorial来预测温度,试试R中的Keras包。但是,本教程没有解释如何使用训练有素的RNN模型进行预测,我想知道如何做到这一点。为了训练模型,我使用了从教程中复制的以下代码:
GameObject circle;
void Update(){
if (circle != null) { //if the circle has been assigned, rotate it
circle.transform.Rotate(cam.up, -Input.GetAxis("Mouse X") * rotationSpeed, Space.World);
}
else if (Input.GetMouseButtonDown(0)) { //if clicked, assign the circle
circle = this.GameObject.transform.parent;
}
if (circle != null && Input.GetMouseButtonUp(0)) { //supposed to snap to the right spot, this is the part that isn't working
var rotate = circle.transform.rotation.y;
var newRotate = Mathf.Round((rotate * 360) / 18) * 18;
if (newRotate > 360) { newRotate -= 360; }
else if (newRotate < 0) { newRotate += 360; }
circle.transform.eulerAngles = new Vector3(0, newRotate, 0);
}
}
我尝试使用下面的代码预测温度。如果我是正确的,这应该给我每批的标准化预测温度。因此,当我对值进行非规范化并对它们求平均值时,我会得到预测的温度。这是正确的,如果是,那么预测哪个时间(最近观察时间+ dir.create("~/Downloads/jena_climate", recursive = TRUE)
download.file(
"https://s3.amazonaws.com/keras-datasets/jena_climate_2009_2016.csv.zip",
"~/Downloads/jena_climate/jena_climate_2009_2016.csv.zip"
)
unzip(
"~/Downloads/jena_climate/jena_climate_2009_2016.csv.zip",
exdir = "~/Downloads/jena_climate"
)
library(readr)
data_dir <- "~/Downloads/jena_climate"
fname <- file.path(data_dir, "jena_climate_2009_2016.csv")
data <- read_csv(fname)
data <- data.matrix(data[,-1])
train_data <- data[1:200000,]
mean <- apply(train_data, 2, mean)
std <- apply(train_data, 2, sd)
data <- scale(data, center = mean, scale = std)
generator <- function(data, lookback, delay, min_index, max_index,
shuffle = FALSE, batch_size = 128, step = 6) {
if (is.null(max_index))
max_index <- nrow(data) - delay - 1
i <- min_index + lookback
function() {
if (shuffle) {
rows <- sample(c((min_index+lookback):max_index), size = batch_size)
} else {
if (i + batch_size >= max_index)
i <<- min_index + lookback
rows <- c(i:min(i+batch_size, max_index))
i <<- i + length(rows)
}
samples <- array(0, dim = c(length(rows),
lookback / step,
dim(data)[[-1]]))
targets <- array(0, dim = c(length(rows)))
for (j in 1:length(rows)) {
indices <- seq(rows[[j]] - lookback, rows[[j]],
length.out = dim(samples)[[2]])
samples[j,,] <- data[indices,]
targets[[j]] <- data[rows[[j]] + delay,2]
}
list(samples, targets)
}
}
lookback <- 1440
step <- 6
delay <- 144
batch_size <- 128
train_gen <- generator(
data,
lookback = lookback,
delay = delay,
min_index = 1,
max_index = 200000,
shuffle = TRUE,
step = step,
batch_size = batch_size
)
val_gen = generator(
data,
lookback = lookback,
delay = delay,
min_index = 200001,
max_index = 300000,
step = step,
batch_size = batch_size
)
test_gen <- generator(
data,
lookback = lookback,
delay = delay,
min_index = 300001,
max_index = NULL,
step = step,
batch_size = batch_size
)
# How many steps to draw from val_gen in order to see the entire validation set
val_steps <- (300000 - 200001 - lookback) / batch_size
# How many steps to draw from test_gen in order to see the entire test set
test_steps <- (nrow(data) - 300001 - lookback) / batch_size
library(keras)
model <- keras_model_sequential() %>%
layer_flatten(input_shape = c(lookback / step, dim(data)[-1])) %>%
layer_dense(units = 32, activation = "relu") %>%
layer_dense(units = 1)
model %>% compile(
optimizer = optimizer_rmsprop(),
loss = "mae"
)
history <- model %>% fit_generator(
train_gen,
steps_per_epoch = 500,
epochs = 20,
validation_data = val_gen,
validation_steps = val_steps
)
?)?
delay
此外,使用prediction.set <- test_gen()[[1]]
prediction <- predict(model, prediction.set)
和keras::predict_generator()
功能的正确方法是什么?如果我使用以下代码:
test_gen()
它给出了这个错误:
model %>% predict_generator(generator = test_gen,
steps = test_steps)
答案 0 :(得分:4)
注意:我对R的语法了解很少,因此很遗憾,我无法使用R给您答案。相反,我在答案中使用Python。希望您能轻松地至少将我的话翻译回R。
...如果我是正确的,这应该给我归一化的预测 每批温度。
是的,没错。因为您已经使用标准化标签训练了预测,所以预测将被标准化:
data <- scale(data, center = mean, scale = std)
因此,您需要使用计算出的均值和std对值进行归一化以找到真实的预测:
pred = model.predict(test_data)
denorm_pred = pred * std + mean
...然后为其预测时间(最新观察时间+ 延迟?)
是的。具体而言,由于在此特定数据集中每10分钟记录一次新的观测值,并且已设置delay=144
,因此这意味着预测值是提前24小时的温度(即144 * 10 = 1440分钟= 24小时)从上一次给定的观察结果开始。
此外,使用
keras::predict_generator()
的正确方法是test_gen()
函数?
predict_generator
使用一个生成器,该生成器仅提供测试样本作为输出,而不提供标签(因为在执行预测时不需要标签;在训练时需要标签,即fit_generator()
,以及评估模型时,即evaluate_generator()
)。这就是为什么错误提示您需要传递一个数组而不是两个数组的原因。因此,您需要定义一个仅提供测试样本的生成器,或者在Python中,将现有的生成器包装在仅提供输入样本的另一个函数中(我不知道是否可以在R中完成此操作) ):
def pred_generator(gen):
for data, labels in gen:
yield data # discards labels
preds = model.predict_generator(pred_generator(test_generator), number_of_steps)
您需要提供另一个参数,该参数是生成器涵盖测试数据中所有样本的步骤数。实际上,我们有num_steps = total_number_of_samples / batch_size
。例如,如果您有1000个样本,并且生成器每次生成10个样本,则需要对1000 / 10 = 100
个步骤使用生成器。
奖金:要查看模型的效果如何,可以使用evaluate_generator
并使用现有的测试生成器(即test_gen
):
loss = model.evaluate_generator(test_gen, number_of_steps)
给定的loss
也已归一化,并对其进行归一化(以获得更好的预测误差),您只需将其乘以std
(您无需添加{{1 }},因为您使用mean
,即平均绝对误差作为损失函数):
mae
这将告诉您平均而言您的预测有多少偏离。例如,如果您要预测温度,则denorm_loss = loss * std
为5表示预测平均偏离5度(即小于或大于实际值)。
更新:对于预测,您可以使用R中的现有生成器来定义新生成器,如下所示:
denorm_loss