此问题基于我之前提到过的Python - Pandas - Combining rows of multiple columns into single row in dataframe based on categorical value。
我有一个表格格式如下:
Var1 Var2 Var3 Var4 ID
0 0.70089 0.93120 1.867650 0.658020 1
1 0.15893 -0.74950 1.089150 -0.045123 1
2 0.13690 0.59210 -0.032990 0.672860 1
3 -0.50136 0.89913 0.440200 0.812150 1
4 1.08940 0.43036 0.669470 1.286000 1
5 0.09310 0.14979 -0.392335 0.040500 1
6 7 0.63339 1.27161 0.852072 0.474800 2
7 8 -0.54944 -0.04547 0.867050 -0.234800 2
8 9 1.28600 1.87650 0.976670 0.440200 2
我使用以下代码创建了上表:
import pandas as pd
df1 = {'Var1': [0.70089, 0.15893, 0.1369, -0.50136, 1.0894, 0.0931, 0.63339, -0.54944, 1.286], Var2': [0.9312, -0.7495, 0.5921, 0.89913, 0.43036, 0.14979, 1.27161, -0.04547, 1.8765], 'Var3': [1.86765, 1.08915,-0.03299, 0.4402, 0.66947, -0.392335, 0.852072, 0.86705, 0.97667], 'Var4': [0.65802, -0.045123, 0.67286, 0.81215, 1.286, 0.0405, 0.4748, -0.2348, 0.4402] 'ID':[1, 1, 1, 1, 1, 1, 2, 2, 2]}
df=pd.Dataframe(data=df1)
我希望根据列ID'将其分组为特定格式。
所需的输出结构与下表相似:
ID V1_0_0 V2_0_1 V3_0_2 V4_0_3 V1_1_0 V2_1_1 V3_1_2 V4_1_3
1 A B C D E F G H
2 I J K L 0 0 0 0
我是在上面引用的最后一个问题的用户 Allen 的帮助下实现的。代码印在下面:
num_V = 4
max_row = df.groupby('ID').ID.count().max()
df= df.groupby('ID').apply(lambda x: x.values[:,1:].reshape(1,-1)
[0].apply(lambda x: x.values[:,1:].reshape(1,-1)[0]).apply(pd.Series)
.fillna(0)
df.columns = ['V{}_{}_{}'.format(i+1,j,i) for j in range(max_row) for i in
range(num_V)]
print(df)
其结果产生以下输出表:
V1_0_0 V2_0_1 V3_0_2 ***V4_0_3** V1_1_0 V2_1_1 V3_1_2 \
ID
1 0.93120 1.867650 0.65802 1 -0.74950 1.08915 -0.045123
2 1.27161 0.852072 0.47480 2 -0.04547 0.86705 -0.234800
**V4_1_3*** V1_2_0 V2_2_1 ...V3_3_2 **V4_3_3** V1_4_0 V2_4_1 \
ID ...
1 1 0.5921 -0.03299 ... 0.81215 1 0.43036 0.66947
2 2 1.8765 0.97667 ... 0.00000 0 0.00000 0.00000
V3_4_2 **V4_4_3** V1_5_0 V2_5_1 V3_5_2 **V4_5_3**
ID
1 1.286 1 0.14979 -0.392335 0.0405 1
2 0.000 0 0.00000 0.000000 0.0000 0
这是部分正确的,但问题是某些列在每3列(** **之间的列)之后给出值1和2。 然后在没有与ID'相关的值之后打印1和0。价值2。 在检查之后,我意识到它不是在打印" Var1"值,并且值由一列关闭。 (即V1_0_0应为0.70089,V4_0_3的实际值应为V3_0_2的值,等于0.65802。
有没有办法纠正这个问题,以便得到与我想要的输出表完全相同的东西?如何确保** **标记的列删除它们具有的值并返回正确的值?
我正在使用 Python 3.4 在 Linux终端上
运行它感谢。
答案 0 :(得分:1)
不确定您提供的代码有什么问题,但请尝试一下,让我知道它是否能满足您的需求:
import pandas as pd
df = {'Var1': [0.70089, 0.15893, 0.1369, -0.50136, 1.0894, 0.0931, 0.63339, -0.54944, 1.286], 'Var2': [0.9312, -0.7495, 0.5921, 0.89913, 0.43036, 0.14979, 1.27161, -0.04547, 1.8765], 'Var3': [1.86765, 1.08915,-0.03299, 0.4402, 0.66947, -0.392335, 0.852072, 0.86705, 0.97667], 'Var4': [0.65802, -0.045123, 0.67286, 0.81215, 1.286, 0.0405, 0.4748, -0.2348, 0.4402], 'ID':[1, 1, 1, 1, 1, 1, 2, 2, 2]}
df=pd.DataFrame(df)
newdataframe=pd.DataFrame(columns=df.columns)
newID=[]
for agroup in df.ID.unique():
temp_df=pd.DataFrame(columns=df.columns)
adf=df[df.ID==agroup]
for aline in adf.itertuples():
a= ((pd.DataFrame(list(aline))).T).drop(columns=[0])
a.columns=df.columns
if a.ID.values[0] not in newID:
suffix_count=1
temp_df=pd.concat([temp_df,a])
newID.append(a.ID.values[0])
else:
temp_df = temp_df.merge(a, how='outer', on='ID', suffixes=('', '_'+ str(suffix_count)))
suffix_count += 1
newdataframe=pd.concat([newdataframe,temp_df])
print (newdataframe)
输出:
ID Var1 Var1_1 Var1_2 Var1_3 Var1_4 Var1_5 Var2 Var2_1 \
0 1.0 0.70089 0.15893 0.1369 -0.50136 1.0894 0.0931 0.93120 -0.74950
0 2.0 0.63339 -0.54944 1.2860 NaN NaN NaN 1.27161 -0.04547
Var2_2 ... Var3_2 Var3_3 Var3_4 Var3_5 Var4 Var4_1 \
0 0.5921 ... -0.03299 0.4402 0.66947 -0.392335 0.65802 -0.045123
0 1.8765 ... 0.97667 NaN NaN NaN 0.47480 -0.234800
Var4_2 Var4_3 Var4_4 Var4_5
0 0.67286 0.81215 1.286 0.0405
0 0.44020 NaN NaN NaN
另一个用于实现您要查找的输出的代码:
import pandas as pd
import numpy as np
import re
df = {'Var1': [0.70089, 0.15893, 0.1369, -0.50136, 1.0894, 0.0931, 0.63339, -0.54944, 1.286], 'Var2': [0.9312, -0.7495, 0.5921, 0.89913, 0.43036, 0.14979, 1.27161, -0.04547, 1.8765], 'Var3': [1.86765, 1.08915,-0.03299, 0.4402, 0.66947, -0.392335, 0.852072, 0.86705, 0.97667], 'Var4': [0.65802, -0.045123, 0.67286, 0.81215, 1.286, 0.0405, 0.4748, -0.2348, 0.4402], 'ID':[1, 1, 1, 1, 1, 1, 2, 2, 2]}
df=pd.DataFrame(df)
df['duplicateID']=df['ID'].duplicated()
newdf=df[df['duplicateID']==False]
newdf=newdf.reset_index()
newdf=newdf.iloc[:,1:]
df=df[df['duplicateID']==True]
df=df.reset_index()
df=df.iloc[:,1:]
del newdf['duplicateID']
del df['duplicateID']
merge_count=0
newID=[]
for aline in df.itertuples():
a= ((pd.DataFrame(list(aline))).T).drop(columns=[0])
a.columns=df.columns
newdf=newdf.merge(a, how='left', on ='ID', suffixes=('_'+str(merge_count),'_'+str(merge_count+1)))
merge_count+=1
newdf.index=newdf['ID']
del newdf['ID']
newdf.columns=[col+'_'+str(int(re.findall('\d+',col)[0])-1) for col in newdf.columns]
print newdf