我正在尝试从我的机器上的Kaggle教程运行以下代码(Windows 10 Home v.1709 build 16299.248,Python 3.6.3,JupyterLab 0.31.8):
from keras.models import Sequential
from keras.layers import Dense, Flatten, GlobalAveragePooling2D
from keras.applications import ResNet50
num_classes = 2
resnet_weights_path = '../input/resnet50/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5'
my_new_model = Sequential()
my_new_model.add(ResNet50(include_top=False, pooling='avg', weights=resnet_weights_path))
my_new_model.add(Dense(num_classes, activation='softmax'))
我收到以下错误:
ValueError Traceback (most recent call last)
<ipython-input-2-7f139a1e52fa> in <module>()
7
8 my_new_model = Sequential()
----> 9 my_new_model.add(ResNet50(include_top=False, pooling='avg', weights=resnet_weights_path))
10 my_new_model.add(Dense(num_classes, activation='softmax'))
~\Anaconda3\lib\site-packages\keras\models.py in add(self, layer)
465 # and create the node connecting the current layer
466 # to the input layer we just created.
--> 467 layer(x)
468
469 if len(layer._inbound_nodes[-1].output_tensors) != 1:
~\Anaconda3\lib\site-packages\keras\engine\topology.py in __call__(self, inputs, **kwargs)
615
616 # Actually call the layer, collecting output(s), mask(s), and shape(s).
--> 617 output = self.call(inputs, **kwargs)
618 output_mask = self.compute_mask(inputs, previous_mask)
619
~\Anaconda3\lib\site-packages\keras\engine\topology.py in call(self, inputs, mask)
2076 return self._output_tensor_cache[cache_key]
2077 else:
-> 2078 output_tensors, _, _ = self.run_internal_graph(inputs, masks)
2079 return output_tensors
2080
~\Anaconda3\lib\site-packages\keras\engine\topology.py in run_internal_graph(self, inputs, masks)
2227 if 'mask' not in kwargs:
2228 kwargs['mask'] = computed_mask
-> 2229 output_tensors = _to_list(layer.call(computed_tensor, **kwargs))
2230 output_masks = _to_list(layer.compute_mask(computed_tensor,
2231 computed_mask))
~\Anaconda3\lib\site-packages\keras\layers\normalization.py in call(self, inputs, training)
183 self.add_update([K.moving_average_update(self.moving_mean,
184 mean,
--> 185 self.momentum),
186 K.moving_average_update(self.moving_variance,
187 variance,
~\Anaconda3\lib\site-packages\keras\backend\tensorflow_backend.py in moving_average_update(x, value, momentum)
999 """
1000 return moving_averages.assign_moving_average(
-> 1001 x, value, momentum, zero_debias=True)
1002
1003
~\Anaconda3\lib\site-packages\tensorflow\python\training\moving_averages.py in assign_moving_average(variable, value, decay, zero_debias, name)
68 decay = math_ops.cast(decay, variable.dtype.base_dtype)
69 if zero_debias:
---> 70 update_delta = _zero_debias(variable, value, decay)
71 else:
72 update_delta = (variable - value) * decay
~\Anaconda3\lib\site-packages\tensorflow\python\training\moving_averages.py in _zero_debias(unbiased_var, value, decay)
178 local_step_initializer = init_ops.zeros_initializer()
179 biased_var = variable_scope.get_variable(
--> 180 "biased", initializer=biased_initializer, trainable=False)
181 local_step = variable_scope.get_variable(
182 "local_step",
~\Anaconda3\lib\site-packages\tensorflow\python\ops\variable_scope.py in get_variable(name, shape, dtype, initializer, regularizer, trainable, collections, caching_device, partitioner, validate_shape, use_resource, custom_getter)
1047 collections=collections, caching_device=caching_device,
1048 partitioner=partitioner, validate_shape=validate_shape,
-> 1049 use_resource=use_resource, custom_getter=custom_getter)
1050 get_variable_or_local_docstring = (
1051 """%s
~\Anaconda3\lib\site-packages\tensorflow\python\ops\variable_scope.py in get_variable(self, var_store, name, shape, dtype, initializer, regularizer, trainable, collections, caching_device, partitioner, validate_shape, use_resource, custom_getter)
946 collections=collections, caching_device=caching_device,
947 partitioner=partitioner, validate_shape=validate_shape,
--> 948 use_resource=use_resource, custom_getter=custom_getter)
949
950 def _get_partitioned_variable(self,
~\Anaconda3\lib\site-packages\tensorflow\python\ops\variable_scope.py in get_variable(self, name, shape, dtype, initializer, regularizer, reuse, trainable, collections, caching_device, partitioner, validate_shape, use_resource, custom_getter)
354 reuse=reuse, trainable=trainable, collections=collections,
355 caching_device=caching_device, partitioner=partitioner,
--> 356 validate_shape=validate_shape, use_resource=use_resource)
357
358 def _get_partitioned_variable(
~\Anaconda3\lib\site-packages\tensorflow\python\ops\variable_scope.py in _true_getter(name, shape, dtype, initializer, regularizer, reuse, trainable, collections, caching_device, partitioner, validate_shape, use_resource)
339 trainable=trainable, collections=collections,
340 caching_device=caching_device, validate_shape=validate_shape,
--> 341 use_resource=use_resource)
342
343 if custom_getter is not None:
~\Anaconda3\lib\site-packages\tensorflow\python\ops\variable_scope.py in _get_single_variable(self, name, shape, dtype, initializer, regularizer, partition_info, reuse, trainable, collections, caching_device, validate_shape, use_resource)
651 " Did you mean to set reuse=True in VarScope? "
652 "Originally defined at:\n\n%s" % (
--> 653 name, "".join(traceback.format_list(tb))))
654 found_var = self._vars[name]
655 if not shape.is_compatible_with(found_var.get_shape()):
ValueError: Variable bn_conv1/moving_mean/biased already exists, disallowed. Did you mean to set reuse=True in VarScope? Originally defined at:
File "C:\Users\felix\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 1228, in __init__
self._traceback = _extract_stack()
File "C:\Users\felix\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 2336, in create_op
original_op=self._default_original_op, op_def=op_def)
File "C:\Users\felix\Anaconda3\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 768, in apply_op
op_def=op_def)
我在TensorFlow中读过很多关于变量重用的东西,但上面的代码似乎在Kaggle的在线内核上运行得很好。任何提示将不胜感激!
答案 0 :(得分:0)
您收到此错误是因为您运行定义模型两次的单元格。由于代码在内部使用tf.get_variable
,它会抱怨变量已经在图中定义。
如果您想要创建新模型(例如,第二次运行模型单元格),您可能需要使用{{3}}重置默认图表
答案 1 :(得分:0)
因为我不知道如何直接解决问题,我通过另一种方式解决了这个问题:
我们可以先构建模型,然后从.h5文件加载权重。
使用这样的代码:model.load_weights('xxxxx.h5')
希望它可以帮助您解决错误。