假设我收到的文件名为index_channel.csv
的csv数据集文件,其中index
是示例的索引(从1到10000),channel
是频道的索引(从1到5运行)。所以7_3.csv
是第7个例子的第3个频道。我想加载所有这些csv文件并连接通道以获得正确的张量作为我的数据集。我缺少对函数的引用,这将使我能够这样做。下面是我到目前为止的代码。当我开始运行时,它会抱怨TypeError: expected str, bytes or os.PathLike object, not Tensor
。我猜它是在尝试评估表达式而不是仅在调用sess.run()
之后,但不确定如何规避它。
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
# Imports
import numpy as np
import tensorflow as tf
from tensorflow.contrib.data import Dataset, Iterator
def main(unused_argv):
train_imgs = tf.constant(["1","2","3"]) #just trying the 3 first examples
tr_data = Dataset.from_tensor_slices((train_imgs))
tr_data = tr_data.map(input_parser)
# create TensorFlow Iterator object
iterator = Iterator.from_structure(tr_data.output_types,
tr_data.output_shapes)
next_element = iterator.get_next()
training_init_op = iterator.make_initializer(tr_data)
with tf.Session() as sess:
# initialize the iterator on the training data
sess.run(training_init_op)
# get each element of the training dataset until the end is reached
while True:
try:
elem = sess.run(next_element)
print(elem)
except tf.errors.OutOfRangeError:
print("End of training dataset.")
break
def input_parser(index):
dic={}
for d in range(1,6):
a=np.loadtxt(open("./data_for_tf/" + index +"_M"+str(d)+".csv", "rb"), delimiter=",", skiprows=1)
dic[d]=tf.convert_to_tensor(a, dtype=tf.float32)
metric=np.stack((dic[1],dic[2],dic[3]))
return metric
抱歉,我是TF的新手。我的问题似乎微不足道,但我通过谷歌搜索找到的例子都没有回答我的问题。
答案 0 :(得分:2)
在我看来,错误是通过使用index
生成错误的:
a=np.loadtxt(open("./data_for_tf/" + index +"_M"+str(d)+".csv", "rb"), delimiter=",", skiprows=1)
正如您所怀疑的那样,当TensorFlow设置其声明性模型时,您的input_parser只会被调用一次 - 这将建立TensorFlow操作之间的关系以供以后评估。然而,您的 Python 调用(例如numpy操作)会在此初始化期间立即运行。就在这时,np.loadtxt
正在尝试使用尚未指定的TF操作构建一个字符串。
如果确实如此,您甚至不需要运行模型来生成错误(尝试删除sess.run()
)。
你会在https://www.tensorflow.org/programmers_guide/datasets#preprocessing_data_with_datasetmap的例子中注意到他们使用TF文件访问函数读取数据:
filenames = ["/var/data/file1.txt", "/var/data/file2.txt"]
dataset = tf.data.Dataset.from_tensor_slices(filenames)
# Use `Dataset.flat_map()` to transform each file as a separate nested dataset,
# and then concatenate their contents sequentially into a single "flat" dataset.
# * Skip the first line (header row).
# * Filter out lines beginning with "#" (comments).
dataset = dataset.flat_map(
lambda filename: (
tf.data.TextLineDataset(filename)
.skip(1)
.filter(lambda line: tf.not_equal(tf.substr(line, 0, 1), "#"))))
设计为声明性TF模型的一部分(即在运行时解析文件名)。
以下是使用TensorFlow操作读取文件的更多示例:
https://www.tensorflow.org/get_started/datasets_quickstart#reading_a_csv_file
也可以使用命令式Python函数(请参阅第一个链接中的“使用tf.py_func()应用任意Python逻辑”),但只有在没有其他选项时才建议这样做。
所以,基本上,除非你使用tf.py_fun()
机制,否则你不能指望任何依赖于TF张量或操作的普通Python操作按预期工作。但是,它们可以用于循环结构以建立相互关联的TF操作。
更新:
这是一个示意图:
## For a simple example, I have four files <index>_<channel>_File.txt
## so, 1_1_File.txt, 1_2_File.txt
import tensorflow as tf
def input_parser(filename):
filesWithChannels = []
for i in range(1,3):
channel_data = tf.read_file(filename+'_'+str(i)+'_File.txt')
## Uncomment the two lines below to add csv parsing.
# channel_data = tf.sparse_tensor_to_dense(tf.string_split([channel_data],'\n'), default_value='')
# channel_data = tf.decode_csv(channel_data, record_defaults=[[1.],[1.]])
filesWithChannels.append(channel_data)
return tf.convert_to_tensor(filesWithChannels)
train_imgs = tf.constant(["1","2"]) # e.g.
tr_data = tf.data.Dataset.from_tensor_slices(train_imgs)
tr_data = tr_data.map(input_parser)
iterator = tr_data.make_one_shot_iterator()
next_element = iterator.get_next()
with tf.Session() as sess:
for i in range(2) :
out = sess.run(next_element)
print(out)
更新UPDATE(添加csv):
## For a simple example, I have four files <index>_<channel>_File.txt
## so, 1_1_File.txt, 1_2_File.txt
import tensorflow as tf
with tf.device('/cpu:0'):
def input_parser(filename):
filesWithChannels = []
for i in range(1,3):
channel_data = (tf.data.TextLineDataset(filename+'_'+str(i)+'_File.txt')
.map(lambda line: tf.decode_csv(line, record_defaults=[[1.],[1.]])))
filesWithChannels.append(channel_data)
return tf.data.Dataset.zip(tuple(filesWithChannels))
train_imgs = tf.constant(["1","2"]) # e.g.
tr_data = tf.data.Dataset.from_tensor_slices(train_imgs)
tr_data = tr_data.flat_map(input_parser)
iterator = tr_data.make_one_shot_iterator()
next_element = iterator.get_next()
next_tensor_element = tf.convert_to_tensor(next_element)
with tf.Session() as sess:
for i in range(2) :
out = sess.run(next_tensor_element)
print(out)
有关如何设置字段分隔符以及使用column_defaults
指定列号和默认值的详细信息,请查看tf.decode_csv。