我想用张量"图像"来馈送CNN。当占位符is_training为True时,我希望此张量包含来自训练集的图像(具有FIXED大小),否则我希望它包含来自测试集的图像(非固定大小)。
这是必要的,因为在训练中我从训练图像中采取随机固定裁剪,而在测试中我想要执行密集评估并将整个图像馈送到网络内(它完全卷积,因此它将接受它们)< / p>
当前的NOT WORKING方法是创建两个不同的迭代器,并尝试在session.run中选择tf.cond的训练/测试输入(images,{is_training:True / False})。
问题在于评估迭代器。训练和测试数据集也有不同的大小,所以我不能迭代它们直到最后。有没有办法让这项工作?或者以更聪明的方式重写它?
我已经看到了一些有关此问题的答案,但他们总是使用tf.assign,它采用numpy数组并将其分配给张量。在这种情况下,我不能使用tf.assign,因为我已经有一个来自迭代器的张量。
我当前的代码就是这个。它只是检查张量的形状&#34;图像&#34;:
train_filenames, train_labels = list_images(args.train_dir)
val_filenames, val_labels = list_images(args.val_dir)
graph = tf.Graph()
with graph.as_default():
# Preprocessing (for both training and validation):
def _parse_function(filename, label):
image_string = tf.read_file(filename)
image_decoded = tf.image.decode_jpeg(image_string, channels=3)
image = tf.cast(image_decoded, tf.float32)
return image, label
# Preprocessing (for training)
def training_preprocess(image, label):
# Random flip and crop
image = tf.image.random_flip_left_right(image)
image = tf.random_crop(image, [args.crop,args.crop, 3])
return image, label
# Preprocessing (for validation)
def val_preprocess(image, label):
flipped_image = tf.image.flip_left_right(image)
batch = tf.stack([image,flipped_image],axis=0)
return batch, label
# Training dataset
train_filenames = tf.constant(train_filenames)
train_labels = tf.constant(train_labels)
train_dataset = tf.contrib.data.Dataset.from_tensor_slices((train_filenames, train_labels))
train_dataset = train_dataset.map(_parse_function,num_threads=args.num_workers, output_buffer_size=args.batch_size)
train_dataset = train_dataset.map(training_preprocess,num_threads=args.num_workers, output_buffer_size=args.batch_size)
train_dataset = train_dataset.shuffle(buffer_size=10000)
batched_train_dataset = train_dataset.batch(args.batch_size)
# Validation dataset
val_filenames = tf.constant(val_filenames)
val_labels = tf.constant(val_labels)
val_dataset = tf.contrib.data.Dataset.from_tensor_slices((val_filenames, val_labels))
val_dataset = val_dataset.map(_parse_function,num_threads=1, output_buffer_size=1)
val_dataset = val_dataset.map(val_preprocess,num_threads=1, output_buffer_size=1)
train_iterator = tf.contrib.data.Iterator.from_structure(batched_train_dataset.output_types,batched_train_dataset.output_shapes)
val_iterator = tf.contrib.data.Iterator.from_structure(val_dataset.output_types,val_dataset.output_shapes)
train_images, train_labels = train_iterator.get_next()
val_images, val_labels = val_iterator.get_next()
train_init_op = train_iterator.make_initializer(batched_train_dataset)
val_init_op = val_iterator.make_initializer(val_dataset)
# Indicates whether we are in training or in test mode
is_training = tf.placeholder(tf.bool)
def f_true():
with tf.control_dependencies([tf.identity(train_images)]):
return tf.identity(train_images)
def f_false():
return val_images
images = tf.cond(is_training,f_true,f_false)
num_images = images.shape
with tf.Session(graph=graph) as sess:
sess.run(train_init_op)
#sess.run(val_init_op)
img = sess.run(images,{is_training:True})
print(img.shape)
问题在于,当我只想使用训练迭代器时,我会对该行进行注释以初始化val_init_op但是存在以下错误:
FailedPreconditionError (see above for traceback): GetNext() failed because the iterator has not been initialized. Ensure that you have run the initializer operation for this iterator before getting the next element.
[[Node: IteratorGetNext_1 = IteratorGetNext[output_shapes=[[2,?,?,3], []], output_types=[DT_FLOAT, DT_INT32], _device="/job:localhost/replica:0/task:0/cpu:0"](Iterator_1)]]
如果我不评论该行,一切都按预期工作,当is_training为真时,我得到训练图像,当is_training为False时,我得到验证图像。问题是两个迭代器都需要初始化,当我评估其中一个时,另一个也会递增。因为正如我所说,它们的大小不同会导致问题。
我希望有办法解决它!提前致谢
答案 0 :(得分:7)
诀窍是在iterator.get_next()
和f_true()
函数内调用f_false()
def f_true():
train_images, _ = train_iterator.get_next()
return train_images
def f_false():
val_images, _ = val_iterator.get_next()
return val_images
images = tf.cond(is_training, f_true, f_false)
同样的建议适用于任何具有副作用的TensorFlow操作,例如分配给变量:如果您希望有条件地发生副作用,则必须在传递给tf.cond()
的相应分支函数内创建op。