在这个(哑)例子中,我试图通过计算落入单位圆的(0,1)x(0,1)中随机选择的点数来计算pi。
@guvectorize(['void(float64[:], int32, float64[:])'], '(n),()->(n)', target='cuda')
def guvec_compute_pi(arr, iters, res):
n = arr.shape[0]
for t in range(n):
inside = 0
for i in range(iters):
x = np.random.random()
y = np.random.random()
if x ** 2 + y ** 2 <= 1.0:
inside += 1
res[t] = 4.0 * inside / iters
编译期间弹出此异常:
numba.errors.UntypedAttributeError: Failed at nopython (nopython frontend)
Unknown attribute 'random' of type Module(<module 'numpy.random' from '...'>)
File "scratch.py", line 34
[1] During: typing of get attribute at /.../scratch.py (34)
我天真地认为使用描述here的RNG可以解决问题。我的修改后的代码看起来像:
@guvectorize(['void(float64[:], int32, float64[:])'], '(n),()->(n)', target='cuda')
def guvec_compute_pi(arr, iters, res):
n = arr.shape[0]
rng = create_xoroshiro128p_states(n, seed=1)
for t in range(n):
inside = 0
for i in range(iters):
x = xoroshiro128p_uniform_float64(rng, t)
y = xoroshiro128p_uniform_float64(rng, t)
if x ** 2 + y ** 2 <= 1.0:
inside += 1
res[t] = 4.0 * inside / iters
然而会出现类似的错误:
numba.errors.TypingError: Failed at nopython (nopython frontend)
Untyped global name 'create_xoroshiro128p_states': cannot determine Numba type of <class 'function'>
File "scratch.py", line 28
当我尝试更改为target='parallel'
时,使用numpy.random.random
的原始代码无论是否nopython=True
都可以正常工作。导致target='cuda'
问题的原因是什么方法可以在@guvectorize
- d块中获取随机数?
答案 0 :(得分:1)
create_xoroshiro128p_states函数旨在在CPU上运行,如Numba文档中的此示例所示,重复以下操作:
from __future__ import print_function, absolute_import
from numba import cuda
from numba.cuda.random import create_xoroshiro128p_states,
xoroshiro128p_uniform_float32
import numpy as np
@cuda.jit
def compute_pi(rng_states, iterations, out):
"""Find the maximum value in values and store in result[0]"""
thread_id = cuda.grid(1)
# Compute pi by drawing random (x, y) points and finding what
# fraction lie inside a unit circle
inside = 0
for i in range(iterations):
x = xoroshiro128p_uniform_float32(rng_states, thread_id)
y = xoroshiro128p_uniform_float32(rng_states, thread_id)
if x**2 + y**2 <= 1.0:
inside += 1
out[thread_id] = 4.0 * inside / iterations
threads_per_block = 64
blocks = 24
rng_states = create_xoroshiro128p_states(threads_per_block * blocks, seed=1)
out = np.zeros(threads_per_block * blocks, dtype=np.float32)
compute_pi[blocks, threads_per_block](rng_states, 10000, out)
print('pi:', out.mean())
它生成一个随机初始化数据数组,该数组使GPU上的随机数保持独立于各个线程。该数据最终出现在设备端,这有点令人困惑。但是,它允许您仅将随机状态数据传递到GPU内核。