我正在尝试使用Numba的@jit
和@guvectorize
,并发现@guvectorize
比@jit
慢得多。例如,我有以下代码来计算滚动移动平均值:
import numpy as np
from numba import *
@guvectorize(['void(float64[:], float64[:], float64[:])'], '(n),()->(n)')
def sma(x, m, y):
n = x.shape[0]
mi = int(m)
y[:] *= np.nan
for i in range(mi-1, n):
for j in range(i-mi+1, i+1):
y[i] = x[j] if j == i-m+1 else y[i]+x[j]
y[i] /= double(mi)
@jit(float64[:](float64[:], float64))
def sma1(x, m):
n = x.shape[0]
mi = int(m)
y = np.empty(x.shape[0]) * np.nan
for i in range(mi-1, n):
for j in range(i-mi+1, i+1):
y[i] = x[j] if j == i-m+1 else y[i]+x[j]
y[i] /= double(mi)
return y
以下是测试代码:
import movavg_nb as mv1
import numpy as np
x = np.random.random(100)
import time as t
t0 = t.clock()
for i in range(10000):
y = mv1.sma(x, 5)
print(t.clock()-t0)
t0 = t.clock()
for i in range(10000):
y = mv1.sma1(x, 5)
print(t.clock()-t0)
我跑了两次,因为Numba通常需要第一次分配类型。以下是第二次测试代码的结果:
17.459737999999998 # corresponding to @guvectorize
0.036977999999997735 # corresponding to @jit
数量级是> 450X
问题:我可以理解@vectorize
的目的(输入是相同的),但@guvectorize
更快时@jit
的目的是什么? (或者我的代码中有什么东西会减慢它?)