我已经按照tensorflow教程中的教程来构建用于手写数字识别的 MNIST模型。我希望测试模型,方法是输入单个图像到分类器并获得它预测的输出。
以下是分类器的完整代码。
我尝试使用imread阅读图片,但它没有工作
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
import pylab
import os
from scipy.misc import imread
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
tf.logging.set_verbosity(tf.logging.INFO)
def cnn_model_fn(features, labels, mode):
input_layer = tf.reshape(features["x"],[-1,28,28,1])
conv1 = tf.layers.conv2d(
inputs=input_layer,
filters=32,
kernel_size=[5,5],
padding = "same",
activation = tf.nn.relu)
pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2,2], strides=2)
conv2 = tf.layers.conv2d(
inputs=pool1,
filters=64,
kernel_size=5,
padding="same",
activation = tf.nn.relu)
pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2,2], strides=2)
pool2_flat = tf.reshape(pool2, [ -1, 7 * 7 * 64 ] )
dense = tf.layers.dense(inputs=pool2_flat, units=1024, activation=tf.nn.relu)
dropout = tf.layers.dropout(inputs=dense, rate = 0.4, training=mode == tf.estimator.ModeKeys.TRAIN)
logits = tf.layers.dense(inputs=dropout, units=10)
predictions = {
"classes":tf.argmax(input=logits, axis=1),
"probabilites": tf.nn.softmax(logits, name="softmax_tensor")
}
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
if mode == tf.estimator.ModeKeys.TRAIN:
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)
train_op = optimizer.minimize(
loss=loss,
global_step=tf.train.get_global_step())
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)
eval_metric_ops={
"accuracy":tf.metrics.accuracy(
labels=labels, predictions=predictions["classes"])}
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, eval_metric_ops=eval_metric_ops)
def main(unused_argv):
# Load training and eval data
mnist = tf.contrib.learn.datasets.load_dataset("mnist")
train_data = mnist.train.images # Returns np.array
train_labels = np.asarray(mnist.train.labels, dtype=np.int32)
eval_data = mnist.test.images # Returns np.array
eval_labels = np.asarray(mnist.test.labels, dtype=np.int32)
# Create the Estimator
mnist_classifier = tf.estimator.Estimator(
model_fn=cnn_model_fn, model_dir="/tmp/mnist_convnet_model")
Set up logging for predictions
Log the values in the "Softmax" tensor with label "probabilities"
tensors_to_log = {"probabilities": "softmax_tensor"}
logging_hook = tf.train.LoggingTensorHook(
tensors=tensors_to_log, every_n_iter=50)
# Train the model
train_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": train_data},
y=train_labels,
batch_size=100,
num_epochs=None,
shuffle=True)
mnist_classifier.train(
input_fn=train_input_fn,
steps=20000,
hooks=[logging_hook])
# Evaluate the model and print results
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": eval_data},
y=eval_labels,
num_epochs=1,
shuffle=False)
eval_results = mnist_classifier.evaluate(input_fn=eval_input_fn)
print(eval_results)
答案 0 :(得分:0)
我发现真正有用的资源是Tensorflow的官方教程,其中包括他们的Estimator演示。在其中,您可以找到如何使用模型测试numpy数组。这是链接:https://github.com/tensorflow/models/tree/master/official/mnist
希望这有帮助!