在MNIST模型上测试图像,Python TensorFlow

时间:2017-07-03 07:06:00

标签: python tensorflow mnist

我最近开始同时学习python和tensorflow,我目前正在研究MNIST,这里是关于MNIST数据集的代码,模型训练和测试,我的下一个任务是从计算机中取出一个图像,将其导入我的在我训练过的模型上编程并测试该图像。所以我有两个问题

  1. 如何保存我的模型,以便我不必一次又一次地运行它?

  2. 如何在此模型上导入和测试图像,以便模型可以预测哪个数字

    import tensorflow as tf`
    from tensorflow.examples.tutorials.mnist import input_data
    
    mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
    n_nodes_hl1 = 500
    n_nodes_hl2 = 500
    n_nodes_hl3 = 500
    n_classes = 10
    batch_size = 100
    x = tf.placeholder('float', [None, 784])
    y = tf.placeholder('float')
    
    def neural_network_model(data):
        hidden_1_layer = {'weights': tf.Variable(tf.random_normal([784, n_nodes_hl1])),
                          'biases': tf.Variable(tf.random_normal([n_nodes_hl1]))}
    hidden_2_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])),
                      'biases': tf.Variable(tf.random_normal([n_nodes_hl2]))}
    
    hidden_3_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])),
                      'biases': tf.Variable(tf.random_normal([n_nodes_hl3]))}
    
    output_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl3, n_classes])),
                    'biases': tf.Variable(tf.random_normal([n_classes])), }
    
    l1 = tf.add(
        tf.matmul(
            data,
            hidden_1_layer['weights']),
        hidden_1_layer['biases'])
    l1 = tf.nn.relu(l1)
    
    l2 = tf.add(
        tf.matmul(
            l1,
            hidden_2_layer['weights']),
        hidden_2_layer['biases'])
    l2 = tf.nn.relu(l2)
    
    l3 = tf.add(
        tf.matmul(
            l2,
            hidden_3_layer['weights']),
        hidden_3_layer['biases'])
    l3 = tf.nn.relu(l3)
    
    output = tf.matmul(l3, output_layer['weights']) + output_layer['biases']
    
    return output
    
    
    def train_neural_network(x):
        prediction = neural_network_model(x)
        cost = tf.reduce_mean(
            tf.nn.softmax_cross_entropy_with_logits(
                logits=prediction, labels=y))
        optimizer = tf.train.AdamOptimizer().minimize(cost)
    hm_epochs = 10
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
    
        for epoch in range(hm_epochs):
            epoch_loss = 0
            for _ in range(int(mnist.train.num_examples / batch_size)):
                epoch_x, epoch_y = mnist.train.next_batch(batch_size)
                _, c = sess.run([optimizer, cost], feed_dict={
                                x: epoch_x, y: epoch_y})
                epoch_loss += c
    
            print(
                'Epoch',
                epoch,
                'completed out of',
                hm_epochs,
                'loss:',
                epoch_loss)
    
        correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
    
        accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
        print('Accuracy:', accuracy.eval(
            {x: mnist.test.images, y: mnist.test.labels}))
    
    train_neural_network(x)
    

1 个答案:

答案 0 :(得分:0)

您的模型具有输出张量prediction。如果只提供图像,则应包含10个数字。最高数字的索引是预测(您已经使用tf.argmax(预测,1)来执行此操作)。

要获得预测,您可以

sess.run(prediction, feed_dict={x: <numpy array or tensor containing the 784 floats representing your image>})`