我最近开始同时学习python和tensorflow,我目前正在研究MNIST,这里是关于MNIST数据集的代码,模型训练和测试,我的下一个任务是从计算机中取出一个图像,将其导入我的在我训练过的模型上编程并测试该图像。所以我有两个问题
如何保存我的模型,以便我不必一次又一次地运行它?
如何在此模型上导入和测试图像,以便模型可以预测哪个数字
import tensorflow as tf`
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
n_nodes_hl1 = 500
n_nodes_hl2 = 500
n_nodes_hl3 = 500
n_classes = 10
batch_size = 100
x = tf.placeholder('float', [None, 784])
y = tf.placeholder('float')
def neural_network_model(data):
hidden_1_layer = {'weights': tf.Variable(tf.random_normal([784, n_nodes_hl1])),
'biases': tf.Variable(tf.random_normal([n_nodes_hl1]))}
hidden_2_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])),
'biases': tf.Variable(tf.random_normal([n_nodes_hl2]))}
hidden_3_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])),
'biases': tf.Variable(tf.random_normal([n_nodes_hl3]))}
output_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl3, n_classes])),
'biases': tf.Variable(tf.random_normal([n_classes])), }
l1 = tf.add(
tf.matmul(
data,
hidden_1_layer['weights']),
hidden_1_layer['biases'])
l1 = tf.nn.relu(l1)
l2 = tf.add(
tf.matmul(
l1,
hidden_2_layer['weights']),
hidden_2_layer['biases'])
l2 = tf.nn.relu(l2)
l3 = tf.add(
tf.matmul(
l2,
hidden_3_layer['weights']),
hidden_3_layer['biases'])
l3 = tf.nn.relu(l3)
output = tf.matmul(l3, output_layer['weights']) + output_layer['biases']
return output
def train_neural_network(x):
prediction = neural_network_model(x)
cost = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(
logits=prediction, labels=y))
optimizer = tf.train.AdamOptimizer().minimize(cost)
hm_epochs = 10
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(hm_epochs):
epoch_loss = 0
for _ in range(int(mnist.train.num_examples / batch_size)):
epoch_x, epoch_y = mnist.train.next_batch(batch_size)
_, c = sess.run([optimizer, cost], feed_dict={
x: epoch_x, y: epoch_y})
epoch_loss += c
print(
'Epoch',
epoch,
'completed out of',
hm_epochs,
'loss:',
epoch_loss)
correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
print('Accuracy:', accuracy.eval(
{x: mnist.test.images, y: mnist.test.labels}))
train_neural_network(x)
答案 0 :(得分:0)
您的模型具有输出张量prediction
。如果只提供图像,则应包含10个数字。最高数字的索引是预测(您已经使用tf.argmax(预测,1)来执行此操作)。
要获得预测,您可以
sess.run(prediction, feed_dict={x: <numpy array or tensor containing the 784 floats representing your image>})`