如何提取视频检测到的对象类型。例如,一旦Object Detection API中的视频检测到“笔记本电脑”,我如何获得“笔记本”标签及其ID,以显示单独的文件?
import cv2
cap = cv2.VideoCapture(0)
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
ret = True
while (ret):
ret,image_np = cap.read()
image_np_expanded = np.expand_dims(image_np, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# Actual detection.
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8)
cv2.imshow('image',cv2.resize(image_np,(600,400)))
if cv2.waitKey(25) & 0xFF == ord('q'):
cv2.destroyAllWindows()
cap.release()
break
答案 0 :(得分:1)
假设您有标签映射的pbtxt文件,如下所示:
item {
name: "/m/01g317"
id: 1
display_name: "person"
}
item {
name: "/m/0199g"
id: 2
display_name: "bicycle"
}
item {
name: "/m/0k4j"
id: 3
display_name: "car"
}
...
您可以使用 label_map_util [https://github.com/tensorflow/models/blob/master/research/object_detection/utils/label_map_util.py]
读取字典中的标签label_map = label_map_util.load_labelmap(LABELS_PBTXT_FILE_PATH)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=n_classes, use_display_name=True)
idx_to_label = {}
for cat in categories:
idx_to_label[cat['id']] = cat['name']
然后 - 当您拥有 idx_to_label 字典时,只需使用
idx_to_label.get(curr_id, 'N/A')