图像检测打开简历

时间:2015-05-16 18:51:56

标签: java android opencv image-processing

所以我试图在图像周围绘制一个矩形。我正在使用Open CV从更大的图像中找到子图像。我如何计算它是将模板图​​像(目标)和目标图像(场景)转换为HSV并获得对象的反投影并将其与饱和的场景图像进行比较。有点工作。 (会对任何改进感到高兴)。基本上我想在图像周围绘制一个矩形,并将找到的矩形从场景中提取到Mat。我已经尝试过两种方式,但似乎没有工作。这是我的代码。我的问题是如何从目标图像中获取子图像?

public List<DMatch> subListGoodMatches(List<DMatch> good_matches) {
        Collections.sort(good_matches, (DMatch o1, DMatch o2) -> {
            if (o1.distance < o2.distance) {
                return -1;
            }
            if (o1.distance > o2.distance) {
                return 1;
            }
            return 0;
        });

        if (good_matches.size() > 10) {
            good_matches = good_matches.subList(0, 10);
        }

        return good_matches;
    }

    public List<Mat> calculateHistograms(Mat image) {
        Imgproc.cvtColor(image, image, Imgproc.COLOR_BGR2HSV);

        List<Mat> hsv_planes = new ArrayList<Mat>();
        Core.split(image, hsv_planes);

        MatOfInt histSize = new MatOfInt(256);
        final MatOfFloat histRange = new MatOfFloat(0f, 256f);
        boolean accumulate = true;

        Mat h_hist = new Mat();
        Mat s_hist = new Mat();
        Mat v_hist = new Mat();

        //Break channels
        List<Mat> h_plane = new ArrayList<Mat>();
        List<Mat> s_plane = new ArrayList<Mat>();
        List<Mat> v_plane = new ArrayList<Mat>();

        h_plane.add(hsv_planes.get(0));
        s_plane.add(hsv_planes.get(1));
        v_plane.add(hsv_planes.get(2));

        Imgproc.calcHist(h_plane, new MatOfInt(0), new Mat(), h_hist, histSize, histRange, accumulate);
        Imgproc.calcHist(s_plane, new MatOfInt(0), new Mat(), s_hist, histSize, histRange, accumulate);
        Imgproc.calcHist(v_plane, new MatOfInt(0), new Mat(), v_hist, histSize, histRange, accumulate);

        //Draw combined histograms
        int hist_w = 512;
        int hist_h = 600;
        long bin_w = Math.round((double) hist_w / 256);

        Mat histImage = new Mat(hist_h, hist_w, CvType.CV_8UC3, new Scalar(0, 0, 0));
        Core.normalize(h_hist, h_hist, 3, histImage.rows(), Core.NORM_MINMAX, -1, new Mat());
        Core.normalize(s_hist, s_hist, 3, histImage.rows(), Core.NORM_MINMAX, -1, new Mat());
        Core.normalize(v_hist, v_hist, 3, histImage.rows(), Core.NORM_MINMAX, -1, new Mat());

        for (int i = 1; i < 256; i++) {
            Point p1 = new Point(bin_w * (i - 1), hist_h - Math.round(h_hist.get(i - 1, 0)[0]));
            Point p2 = new Point(bin_w * (i), hist_h - Math.round(h_hist.get(i, 0)[0]));
            Core.line(histImage, p1, p2, RED, 2, 8, 0);

            Point p3 = new Point(bin_w * (i - 1), hist_h - Math.round(s_hist.get(i - 1, 0)[0]));
            Point p4 = new Point(bin_w * (i), hist_h - Math.round(s_hist.get(i, 0)[0]));
            Core.line(histImage, p3, p4, GREEN, 2, 8, 0);

            Point p5 = new Point(bin_w * (i - 1), hist_h - Math.round(v_hist.get(i - 1, 0)[0]));
            Point p6 = new Point(bin_w * (i), hist_h - Math.round(v_hist.get(i, 0)[0]));
            Core.line(histImage, p5, p6, BLUE, 2, 8, 0);

        }

        Highgui.imwrite("img-histogram.jpg", histImage);
        System.out.println("Hist size is: " + hsv_planes.size());

        List<Mat> histograms = new ArrayList<Mat>();
        histograms.add(h_hist);
        histograms.add(s_hist);
        histograms.add(v_hist);

        return histograms;
    }

    public Mat identifyLowSat(Mat image) {

        Mat hsvTargetImage = new Mat();
        Imgproc.cvtColor(image, hsvTargetImage, Imgproc.COLOR_BGR2HSV);
        List<Mat> hsv_planes = new ArrayList<Mat>();
        Core.split(hsvTargetImage, hsv_planes);

        //Get saturation channel
        Mat s_hist = hsv_planes.get(1);

        Imgproc.threshold(s_hist, s_hist, 65, 255, Imgproc.THRESH_BINARY);

        Highgui.imwrite("img-saturation.png", s_hist);

        return s_hist;
    }

    public Mat getBackProjOfHueTemplate(Mat image, Mat hue_histogram) {

        Mat hsvTargetImage = new Mat();
        Imgproc.cvtColor(image, hsvTargetImage, Imgproc.COLOR_BGR2HSV);
        List<Mat> hsv_planes = new ArrayList<Mat>();
        Core.split(hsvTargetImage, hsv_planes);

        Mat backProj = new Mat();
        final MatOfFloat range = new MatOfFloat(0f, 256f);

        Imgproc.calcBackProject(hsv_planes, new MatOfInt(0), hue_histogram, backProj, range, 4);

        Highgui.imwrite("img-backProj.png", backProj);

        return backProj;
    }

    public Mat meanShift(Mat image) {
        Mat map = new Mat();
        Rect rect = new Rect();
        TermCriteria term = new TermCriteria();

        term.maxCount = 100;
        term.type = TermCriteria.EPS;
        term.epsilon = 0.1;

        Imgproc.pyrMeanShiftFiltering(image, map, 0.5, 0.5, 5, term);

        Highgui.imwrite("img-meanshift.png", map);
        return map;
    }

    public MatOfDMatch filterMatches(Mat img1, Mat img2) {

        FeatureDetector detector = FeatureDetector.create(FeatureDetector.SIFT);
        DescriptorExtractor descriptor = DescriptorExtractor.create(DescriptorExtractor.BRISK);
        DescriptorMatcher matcher = DescriptorMatcher.create(DescriptorMatcher.BRUTEFORCE_HAMMING);

        // First photo
        //Imgproc.cvtColor(img1, img1, Imgproc.COLOR_RGB2GRAY);
        Mat descriptors1 = new Mat();
        MatOfKeyPoint keypoints1 = new MatOfKeyPoint();

        detector.detect(img1, keypoints1);
        descriptor.compute(img1, keypoints1, descriptors1);

        // Second photo
        //Imgproc.cvtColor(img2, img2, Imgproc.COLOR_RGB2GRAY);
        Mat descriptors2 = new Mat();
        MatOfKeyPoint keypoints2 = new MatOfKeyPoint();

        detector.detect(img2, keypoints2);
        descriptor.compute(img2, keypoints2, descriptors2);

        // Matching
        MatOfDMatch matches = new MatOfDMatch();
        MatOfDMatch filteredMatches = new MatOfDMatch();
        matcher.match(descriptors1, descriptors2, matches);

        List<DMatch> matchesList = matches.toList();
        Double max_dist = Double.MIN_VALUE;
        Double min_dist = Double.POSITIVE_INFINITY;

        for (DMatch matchesList1 : matchesList) {
            Double dist = (double) matchesList1.distance;
            if (dist < min_dist) {
                min_dist = dist;
            }
            if (dist > max_dist) {
                max_dist = dist;
            }
        }

        LinkedList<DMatch> good_matches = new LinkedList<DMatch>();
        for (DMatch matchesList1 : matchesList) {
            if (matchesList1.distance <= (1.5 * min_dist)) {
                good_matches.addLast(matchesList1);
            }
        }

        MatOfDMatch goodMatches = new MatOfDMatch();
        //goodMatches.fromList(good_matches);
        List<DMatch> newGood_Matches = subListGoodMatches(good_matches);
        goodMatches.fromList(newGood_Matches);

        //put keypoints mats into lists
        List<KeyPoint> keypoints1_List = keypoints1.toList();
        List<KeyPoint> keypoints2_List = keypoints2.toList();

        //put keypoints into point2f mats so calib3d can use them to find homography
        LinkedList<Point> objList = new LinkedList<Point>();
        LinkedList<Point> sceneList = new LinkedList<Point>();
        for (int i = 0; i < newGood_Matches.size(); i++) {
            objList.addLast(keypoints2_List.get(newGood_Matches.get(i).trainIdx).pt);
            sceneList.addLast(keypoints1_List.get(newGood_Matches.get(i).queryIdx).pt);
        }
        MatOfPoint2f obj = new MatOfPoint2f();
        MatOfPoint2f scene = new MatOfPoint2f();
        obj.fromList(objList);
        scene.fromList(sceneList);

        System.out.println(matches.size() + " " + goodMatches.size());

        //output image
        Mat outputImg = new Mat();
        MatOfByte drawnMatches = new MatOfByte();
        Features2d.drawMatches(img1, keypoints1, img2, keypoints2, goodMatches, outputImg, Scalar.all(-1), Scalar.all(-1), drawnMatches, Features2d.NOT_DRAW_SINGLE_POINTS);

        Highgui.imwrite("img-matches.png", outputImg);
        drawWithRect(img1, img2, obj, scene, outputImg);

        keypointers1 = keypoints1;
        keypointers2 = keypoints2;

        return goodMatches;
    }

    public MatOfDMatch filterMatchesByHomography(MatOfDMatch matches) {
        MatOfKeyPoint keypoints1 = keypointers1;
        MatOfKeyPoint keypoints2 = keypointers2;

        List<Point> lp1 = new ArrayList<Point>();
        List<Point> lp2 = new ArrayList<Point>();

        KeyPoint[] k1 = keypoints1.toArray();
        KeyPoint[] k2 = keypoints2.toArray();

        List<DMatch> matches_original = matches.toList();

        if (matches_original.size() < 4) {
            MatOfDMatch mat = new MatOfDMatch();
            return mat;
        }

        // Add matches keypoints to new list to apply homography
        for (DMatch match : matches_original) {
            Point kk1 = k1[match.queryIdx].pt;
            Point kk2 = k2[match.trainIdx].pt;
            lp1.add(kk1);
            lp2.add(kk2);
        }

        //srcPoints = new MatOfPoint2f(lp1.toArray(new Point[0]));
        //dstPoints = new MatOfPoint2f(lp2.toArray(new Point[0]));

        Mat mask = new Mat();
        //Mat homography = Calib3d.findHomography(srcPoints, dstPoints, Calib3d.LMEDS, 0.2, mask);
        List<DMatch> matches_homo = new ArrayList<DMatch>();
        int size = (int) mask.size().height;
        for (int i = 0; i < size; i++) {
            if (mask.get(i, 0)[0] == 1) {
                DMatch d = matches_original.get(i);
                matches_homo.add(d);
            }
        }

        MatOfDMatch mat = new MatOfDMatch();
        mat.fromList(matches_homo);

        //Highgui.imwrite("img-matchesWithRect.png", mat);
        return mat;
    }

    public void drawMatches(Mat img1, Mat img2, MatOfDMatch matches, boolean imageOnly) {
        Mat out = new Mat();

        MatOfKeyPoint key2 = keypointers2;
        MatOfKeyPoint key1 = keypointers1;

        //Imgproc.cvtColor(img1, im1, Imgproc.COLOR_BGR2RGB);
        //Imgproc.cvtColor(img2, im2, Imgproc.COLOR_BGR2RGB);
        if (imageOnly) {
            MatOfDMatch emptyMatch = new MatOfDMatch();
            MatOfKeyPoint emptyKey1 = new MatOfKeyPoint();
            MatOfKeyPoint emptyKey2 = new MatOfKeyPoint();
            Features2d.drawMatches(img1, emptyKey1, img2, emptyKey2, emptyMatch, out);
        } else {
            Features2d.drawMatches(img1, key1, img2, key2, matches, out);
        }

        //Imgproc.cvtColor(out, out, Imgproc.COLOR_BGR2RGB);
        Core.putText(out, "FRAME", new Point(img1.width() / 2, 30), Core.FONT_HERSHEY_PLAIN, 2, new Scalar(0, 255, 255), 3);
        Core.putText(out, "MATCHED", new Point(img1.width() + img2.width() / 2, 30), Core.FONT_HERSHEY_PLAIN, 2, new Scalar(255, 0, 0), 3);

        Highgui.imwrite("img-drawnMatches.png", out);
    }

    public void drawWithRect(Mat img1, Mat img2, MatOfPoint2f obj, MatOfPoint2f scene, Mat outputImg){
        //run homography on object and scene points
        Mat H = Calib3d.findHomography(obj, scene, Calib3d.RANSAC, 5);
        Mat tmp_corners = new Mat(4, 1, CvType.CV_32FC2);
        Mat scene_corners = new Mat(4, 1, CvType.CV_32FC2);

        //get corners from object
        tmp_corners.put(0, 0, new double[]{0, 0});
        tmp_corners.put(1, 0, new double[]{img2.cols(), 0});
        tmp_corners.put(2, 0, new double[]{img2.cols(), img2.rows()});
        tmp_corners.put(3, 0, new double[]{0, img2.rows()});

        Core.perspectiveTransform(tmp_corners, scene_corners, H);

        Core.line(outputImg, new Point(scene_corners.get(0, 0)), new Point(scene_corners.get(1, 0)), new Scalar(0, 255, 0), 4);
        Core.line(outputImg, new Point(scene_corners.get(1, 0)), new Point(scene_corners.get(2, 0)), new Scalar(0, 255, 0), 4);
        Core.line(outputImg, new Point(scene_corners.get(2, 0)), new Point(scene_corners.get(3, 0)), new Scalar(0, 255, 0), 4);
        Core.line(outputImg, new Point(scene_corners.get(3, 0)), new Point(scene_corners.get(0, 0)), new Scalar(0, 255, 0), 4);

        Highgui.imwrite("img-matchesWithRect.png", outputImg);
    }

主要方法:

public static void main(String args[]) {
        System.load(new File("/usr/local/Cellar/opencv/2.4.9/share/OpenCV/java/libopencv_java249.dylib").getAbsolutePath());

        Mat img1 = Highgui.imread(scenesD);
        Mat img2 = Highgui.imread(objectD);

        MeanShift Tester = new MeanShift();
        List<Mat> histogramsList;
        Mat hue_histogram;
        Mat saturationChannel;
        Mat getBackProjOfHueTemp;

        //Calulate Histogram of Object
        histogramsList = Tester.calculateHistograms(img2);

        //Get saturation channel of scene
        saturationChannel = Tester.identifyLowSat(img1);

        //Get hue of calculated object histogram
        hue_histogram = histogramsList.get(0);

        //Get back projection of object from calculated hue histogram template
        getBackProjOfHueTemp = Tester.getBackProjOfHueTemplate(img2, hue_histogram);

        //Filtering matches
        MatOfDMatch matches = Tester.filterMatches(saturationChannel, getBackProjOfHueTemp);
        MatOfDMatch homo_matches = Tester.filterMatchesByHomography(matches);

        //Draw img unto screen;
        Tester.drawMatches(saturationChannel, getBackProjOfHueTemp, homo_matches, false);
    }

到目前为止,这是我得到的最终影像(img-matches.png) enter image description here

试图从图像中获取矩形给我这个(img-matchesWithRect.png) enter image description here

1 个答案:

答案 0 :(得分:-1)

好的,您的原始图片中的Point已找到目标图片中的匹配项。这些点都有xy坐标 - 以找到&#34;子图像&#34; (或图像中的矩形),您需要做的只是取所有x的最小值来获得左上角x坐标,{{1}的最小值获取左上角y坐标,y s的最大值以获得最右下角x坐标,获取x s的最大值你的右下角y坐标。

然后使用这些你可以创建一个yhttp://docs.opencv.org/java/org/opencv/core/Rect.html)并使用它来访问子图像:image(Rect)(假设你有一个Rect的前一个变量image {1}}):

Mat

现在Rect sub_rect = new Rect(min_x, min_y, max_x - min_x, max_y - min_y); Mat sub_region = image(sub_rect); 将包含您的子区域。