我需要证明这个方程组没有解决方案(原因是它是过度确定的)。有没有一种简单的方法来实现 in Coq ?即策略或图书馆?
Require Import Reals.
Open Scope R.
Lemma no_solution:
forall
b11 b12 b13 b14 b21 b22 b23 b24 b31 b32 b33 b34
r r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 : R,
1 = r * b11 + r0 * b21 + r1 * b31 ->
0 = r * b12 + r0 * b22 + r1 * b32 ->
0 = r * b13 + r0 * b23 + r1 * b33 ->
0 = r * b14 + r0 * b24 + r1 * b34 ->
0 = r2 * b11 + r3 * b21 + r4 * b31 ->
1 = r2 * b12 + r3 * b22 + r4 * b32 ->
0 = r2 * b13 + r3 * b23 + r4 * b33 ->
0 = r2 * b14 + r3 * b24 + r4 * b34 ->
0 = r5 * b11 + r6 * b21 + r7 * b31 ->
0 = r5 * b12 + r6 * b22 + r7 * b32 ->
1 = r5 * b13 + r6 * b23 + r7 * b33 ->
0 = r5 * b14 + r6 * b24 + r7 * b34 ->
0 = r8 * b11 + r9 * b21 + r10 * b31 ->
0 = r8 * b12 + r9 * b22 + r10 * b32 ->
0 = r8 * b13 + r9 * b23 + r10 * b33 ->
1 = r8 * b14 + r9 * b24 + r10 * b34 ->
False.
答案 0 :(得分:4)
如果我理解得当,这组方程不能同时成立,因为它要求3x4矩阵的秩高于3。
结果的主要定理在mathematical components library中称为mulmx_max_rank
。我有更多工作将您的非结构化问题的表示连接到
使用矩阵构造一个而不是找到正确的定理。此实验在coq-8.7中进行,coq-mathcomp-ssreflect
和coq-mathcomp-algebra
通过opam
(版本1.6.2
加载)。
请注意,此结果适用于任何字段结构。
From mathcomp Require Import all_ssreflect all_algebra.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import GRing.Theory Num.Theory.
Open Scope ring_scope.
Section Solving_linear_equation_systems_in_Coq.
Variable R : fieldType.
Definition seq2matrix m n (s : seq (seq R)) :=
\matrix_(i < m, j < n)
nth 0 (nth nil s i) j.
Lemma no_solution:
forall
b11 b12 b13 b14 b21 b22 b23 b24 b31 b32 b33 b34
r r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 : R,
1 = r * b11 + r0 * b21 + r1 * b31 ->
0 = r * b12 + r0 * b22 + r1 * b32 ->
0 = r * b13 + r0 * b23 + r1 * b33 ->
0 = r * b14 + r0 * b24 + r1 * b34 ->
0 = r2 * b11 + r3 * b21 + r4 * b31 ->
1 = r2 * b12 + r3 * b22 + r4 * b32 ->
0 = r2 * b13 + r3 * b23 + r4 * b33 ->
0 = r2 * b14 + r3 * b24 + r4 * b34 ->
0 = r5 * b11 + r6 * b21 + r7 * b31 ->
0 = r5 * b12 + r6 * b22 + r7 * b32 ->
1 = r5 * b13 + r6 * b23 + r7 * b33 ->
0 = r5 * b14 + r6 * b24 + r7 * b34 ->
0 = r8 * b11 + r9 * b21 + r10 * b31 ->
0 = r8 * b12 + r9 * b22 + r10 * b32 ->
0 = r8 * b13 + r9 * b23 + r10 * b33 ->
1 = r8 * b14 + r9 * b24 + r10 * b34 ->
False.
Proof.
move => b11 b12 b13 b14 b21 b22 b23 b24 b31 b32 b33 b34
r r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 eq1 eq2 eq3 eq4
eq5 eq6 eq7 eq8 eq9 eq10 eq11 eq12 eq13 eq14 eq15 eq16.
set Inp := seq2matrix 4 3
[:: [:: r; r0; r1];
[:: r2; r3; r4];
[:: r5; r6; r7];
[:: r8; r9; r10]].
set B := seq2matrix 3 4 [:: [:: b11; b12; b13; b14];
[:: b21; b22; b23; b24];
[:: b31; b32; b33; b34]].
suff abs: Inp *m B = 1%:M.
have : (\rank (Inp *m B) <= 3)%N by apply: mulmx_max_rank.
by rewrite abs mxrank1.
by apply/matrixP=> [[ [ | [ | [ | [ | ?]]]] pi]]
[ [ | [ | [ | [ | ?]]]] pj] //;
rewrite /Inp /seq2matrix /= !(mxE, big_ord_recr, big_ord0) //= add0r /=
-?(eq1, eq2, eq3, eq4, eq5, eq6, eq7, eq8, eq9, eq10, eq11, eq12).
Qed.
End Solving_linear_equation_systems_in_Coq.