我在R中运行以下脚本 如果我使用%do%而不是%dopar%,脚本运行正常。但是,如果在外部循环中我使用%dopar%,则循环将永远运行而不会抛出任何错误(内存使用量会不断增加,直到内存不足为止)。 我正在使用16个核心。
library(parallel)
library(foreach)
library(doSNOW)
library(dplyr)
NumberOfCluster <- 16
cl <- makeCluster(NumberOfCluster)
registerDoSNOW(cl)
foreach(i = UNSPSC_list, .packages = c('data.table', 'dplyr'), .verbose = TRUE) %dopar%
{
terms <- as.data.table(unique(gsub(" ", "", unlist(terms_list_by_UNSPSC$Terms[which(substr(terms_list_by_UNSPSC$UNSPSC,1,6) == i)]))))
temp <- inner_join(N_of_UNSPSCs_by_Term, terms, on = 'V1')
temp$V2 <- 1/as.numeric(temp$V2)
temp <- temp[order(temp$V2, decreasing = TRUE),]
names(temp) <- c('Term','Imp')
ABNs <- unique(UNSPSCs_per_ABN[which(substr(UNSPSCs_per_ABN$UNSPSC,1,4) == substr(i,1,4)), 1])
predictions <- as.numeric(vector())
predictions <- foreach (j = seq(1 : nrow(train)), .combine = 'c', .packages = 'dplyr') %do%
{
descr <- names(which(!is.na(train[j,]) == TRUE))
if(unlist(predict_all[j,1]) %in% unlist(ABNs) || !unlist(predict_all[j,1]) %in% unlist(suppliers)) {union_all(predictions, sum(temp$Imp[which(temp$Term %in% descr)]))} else {union_all(predictions, 0)}
}
save(predictions, file = paste("Predictions", i,".rda", sep = "_"))
}
答案 0 :(得分:6)
嵌套foreach
循环的正确方法是使用%:%
运算符。查看示例。我在Windows上测试过它。
library(foreach)
library(doSNOW)
NumberOfCluster <- 4
cl <- makeCluster(NumberOfCluster)
registerDoSNOW(cl)
N <- 1e6
system.time(foreach(i = 1:10, .combine = rbind) %:%
foreach(j = 1:10, .combine = c) %do% mean(rnorm(N, i, j)))
system.time(foreach(i = 1:10, .combine = rbind) %:%
foreach(j = 1:10, .combine = c) %dopar% mean(rnorm(N, i, j)))
输出:
> system.time(foreach(i = 1:10, .combine = rbind) %:%
+ foreach(j = 1:10, .combine = c) %do% mean(rnorm(N, i, j)))
user system elapsed
7.38 0.23 7.64
> system.time(foreach(i = 1:10, .combine = rbind) %:%
+ foreach(j = 1:10, .combine = c) %dopar% mean(rnorm(N, i, j)))
user system elapsed
0.09 0.00 2.14
使用嵌套循环的方案如下:
foreach(i) %:% foreach(j) {foo(i, j)}
运算符%:%
用于嵌套多个foreach
循环。你无法在嵌套之间进行计算。在您的情况下,您必须执行两个循环,例如:
# Loop over i
x <- foreach(i = 1:10, .combine = c) %dopar% 2 ^ i
# Nested loop over i and j
foreach(i = 1:10, .combine = rbind) %:% foreach(j = 1:10, .combine = c) %dopar% {x[i] + j}
未经测试的代码:
library(data.table)
library(foreach)
library(doSNOW)
NumberOfCluster <- 2
cl <- makeCluster(NumberOfCluster)
registerDoSNOW(cl)
# Create ABNs as list
ABNs <- foreach(i = UNSPSC_list, .packages = c('data.table', 'dplyr'), .verbose = TRUE) %dopar% {
terms <- as.data.table(unique(gsub(" ", "", unlist(terms_list_by_UNSPSC$Terms[which(substr(terms_list_by_UNSPSC$UNSPSC, 1, 6) == i)]))))
temp <- inner_join(N_of_UNSPSCs_by_Term, terms, on = 'V1')
temp$V2 <- 1 / as.numeric(temp$V2)
temp <- temp[order(temp$V2, decreasing = TRUE), ]
names(temp) <- c('Term', 'Imp')
unique(UNSPSCs_per_ABN[which(substr(UNSPSCs_per_ABN$UNSPSC,1,4) == substr(i,1,4)), 1])
}
# Nested loop
predictions <- foreach(i = UNSPSC_list, .packages = c('data.table', 'dplyr'), .verbose = TRUE) %:%
foreach(j = seq(1:nrow(train)), .combine = 'c', .packages = 'dplyr') %dopar% {
descr <- names(which(!is.na(train[j, ]) == TRUE))
if (unlist(predict_all[j, 1]) %in% unlist(ABNs[[i]]) || !unlist(predict_all[j, 1]) %in% unlist(suppliers)) {
sum(temp$Imp[which(temp$Term %in% descr)])
} else 0
}
for (i in seq_along(predictions)) save(predictions[[i]], file = paste("Predictions", i, ".rda", sep = "_"))