从相机校准opencv python

时间:2018-02-02 05:13:09

标签: python opencv matrix camera-calibration perspective

我试图从相机内在,外在矩阵和失真系数中获得鸟瞰视角。

我尝试使用this问题的答案。

使用的图像是来自opencv官方github repo的样本图像left02.jpg

The image to be prospectively un-distored left02.jpg image from opencv sample images i.e get the bird's eye view of the image

我校准了相机,发现了内在的,外在的矩阵和失真系数。

我没有看到图像,发现了姿势。检查params是否正确。

Image after un-distortion and visualising pose

我用来找到透视变换矩阵的公式是(参考上面的链接):

Hr = K * R.inv() * K.inv()其中R是旋转矩阵(来自cv2.Rodrigues()),K来自cv2.getoptimalnewcameramatrix()

     [ 1  0  |         ]
Ht = [ 0  1  | -K*C/Cz ]
     [ 0  0  |         ]

其中C=-R.inv()*T其中T是来自cv2.solvePnP()的平移向量 和Cz是C矢量的第三个组成部分

所需的转换是:H = Ht * Hr

我用来构造上述等式的代码是:

K = newcameramtx # from cv2.getoptimalnewcameramatrix()
ret,rvec,tvec = cv2.solvePnP(world_points,corners2,K,dist) 
R,_ = cv2.Rodrigues(rvec)
_,R_inv = cv2.invert(R)
_,K_inv = cv2.invert(K)
Hr = np.matmul(K,np.matmul(R_inv,K_inv))
C = np.matmul(-R_inv,tvec)
Cz = C[2]
temp_vector = np.matmul(-K,C/Cz)
Ht = np.identity(3)
for i,val in enumerate(temp_vector):
    Ht[i][2] = val
homography = np.matmul(Ht,Hr)
warped_img =cv2.warpPerspective(img,homography,(img.shape[1],img.shape[0]))
# where img is the above undistored image with visualized pose

生成的扭曲图像不正确。 With homographic matrix = Ht*Hr

如果我使用以下代码从单应性中删除翻译

homography = Hr.copy()
warped_img =cv2.warpPerspective(img,homography,(img.shape[1],img.shape[0]))

我收到以下图片 With homographic matrix = Hr

我认为上图显示我的旋转部分是正确的,但我的翻译错了。

由于平移矩阵(Ht)是一个增广矩阵,我不确定我对上述矩阵的构造是否正确。

我特别想从相机校准中找出鸟瞰透视变换。

那么,我如何纠正上述方程式,以便获得棋盘图像的完美鸟瞰图

还有没有人可以解释一下如何推导出Ht和Hr的上述方程?我没有太多接触线性代数,所以这些方程对我来说不是很明显。

更新

homography = np.matmul(Ht,Hr)
warped_img =cv2.warpPerspective(img,homography,(img.shape[1],img.shape[0]),flags=cv2.WARP_INVERSE_MAP)

cv2.WARP_INVERSE_MAP标志给了我不同的结果

仍然不是我要找的结果!

1 个答案:

答案 0 :(得分:3)

教程中解释了您想要实现的目标:Demo 3: Homography from the camera displacement

您拥有当前的相机姿势(旋转+平移),您可以计算所需的相机姿势,以便从鸟瞰图中查看棋盘。

由于棋盘框架与相机框架不同(请参阅相机框架的here),因此可以进行俯瞰的相机姿势所需的旋转:

enter image description here

只需按照教程进行操作即可获得类似于:

的单应矩阵
H:
[0.935, -0.337, 40.383;
 -0.116, 0.729, 64.381;
 0.000408, -0.001299, 1]

使用warpPerspective

Bird eye view

另一个例子:

Bird eye view 2

由于棋盘是平的(对于通用场景,单应性仅对纯粹的旋转相机运动有效),您也可以使用翻译:

Bird eye view 3

编辑:从教程

派生的代码
#include <opencv2/opencv.hpp>
#include <opencv2/aruco.hpp>

using namespace std;
using namespace cv;

namespace
{
enum Pattern { CHESSBOARD, CIRCLES_GRID, ASYMMETRIC_CIRCLES_GRID };

void calcChessboardCorners(Size boardSize, float squareSize, vector<Point3f>& corners, Pattern patternType = CHESSBOARD)
{
    corners.resize(0);

    switch (patternType)
    {
    case CHESSBOARD:
    case CIRCLES_GRID:
        //! [compute-chessboard-object-points]
        for( int i = 0; i < boardSize.height; i++ )
            for( int j = 0; j < boardSize.width; j++ )
                //To try to center the chessboard frame, we substract the image size
                corners.push_back(Point3f(float((j-boardSize.width/2)*squareSize),
                                          float((i-boardSize.height/2)*squareSize), 0));
        //! [compute-chessboard-object-points]
        break;

    case ASYMMETRIC_CIRCLES_GRID:
        for( int i = 0; i < boardSize.height; i++ )
            for( int j = 0; j < boardSize.width; j++ )
                corners.push_back(Point3f(float((2*j + i % 2)*squareSize),
                                          float(i*squareSize), 0));
        break;

    default:
        CV_Error(Error::StsBadArg, "Unknown pattern type\n");
    }
}

void computeC2MC1(const Mat &R1, const Mat &tvec1, const Mat &R2, const Mat &tvec2,
                  Mat &R_1to2, Mat &tvec_1to2)
{
    //c2Mc1 = c2Mo * oMc1 = c2Mo * c1Mo.inv()
    R_1to2 = R2 * R1.t();
    tvec_1to2 = R2 * (-R1.t()*tvec1) + tvec2;
}
} //namespace

int main()
{
    Mat img = imread("left02.jpg");
    Mat img_corners = img.clone(), img_pose = img.clone(), img_bird_eye_view = img.clone();
    vector<Point2f> corners;
    Size patternSize(9,6);
    bool found = findChessboardCorners(img, patternSize, corners);

    drawChessboardCorners(img_corners, patternSize, corners, found);
    imshow("Chessboard corners detection", img_corners);

    vector<Point3f> objectPoints;
    float squareSize = 2.5e-2;
    calcChessboardCorners(patternSize, squareSize, objectPoints);

    FileStorage fs("left_intrinsics.yml", FileStorage::READ);
    Mat cameraMatrix, distCoeffs;
    fs["camera_matrix"] >> cameraMatrix;
    fs["distortion_coefficients"] >> distCoeffs;

    Mat rvec, tvec;
    solvePnP(objectPoints, corners, cameraMatrix, distCoeffs, rvec, tvec);

    aruco::drawAxis(img_pose, cameraMatrix, distCoeffs, rvec, tvec, 2*squareSize);
    imshow("Pose", img_pose);

    Mat R_desired = (Mat_<double>(3,3) <<
                    0, 1, 0,
                    -1, 0, 0,
                    0, 0, 1);
    Mat R;
    Rodrigues(rvec, R);
    Mat normal = (Mat_<double>(3,1) << 0, 0, 1);
    Mat normal1 = R*normal;
    Mat origin(3, 1, CV_64F, Scalar(0));
    Mat origin1 = R*origin + tvec;
    double d_inv1 = 1.0 / normal1.dot(origin1);
    Mat R_1to2, tvec_1to2;
    Mat tvec_desired = tvec.clone();

    computeC2MC1(R, tvec, R_desired, tvec_desired, R_1to2, tvec_1to2);
    Mat H = R_1to2 + d_inv1 * tvec_1to2*normal1.t();
    H = cameraMatrix * H * cameraMatrix.inv();
    H = H/H.at<double>(2,2);
    std::cout << "H:\n" << H << std::endl;

    warpPerspective(img_pose, img_bird_eye_view, H, img.size());
    Mat compare;
    hconcat(img_pose, img_bird_eye_view, compare);
    imshow("Bird eye view", compare);
    waitKey();

    return 0;
}