我目前正在攻读考试,我试图处理动态矩阵。我遇到了关于计算矩阵的每个对角线的总和的问题,该矩阵的值和大小由用户选择。 我的程序的目的是打印,这要归功于一个函数,其参数是矩阵及其大小,即每个对角线和的值。我将向您展示代码并对其进行深入描述。
----------------
| 52 | 35 | 5 | Example of matrix.
---------------- Imagine the first diagonal to be the one which goes right-to-left
| 2 | 71 | 1 | and only consists in the number "47".
---------------- The second diagonal would be the one which goes right-to-left and
| 3 | 60 | 25 | consists in the number "15" and "79".
---------------- So to get the sum of the second diagonal it would be:
| 79 | 55 | 98 |
---------------- sum = m[n_rows - 1][diag - 2] + m[n_rows - 2][diag - 1]
| 47 | 15 | 66 |
---------------- When diag > columns, in order to avoid error regarding matrix size,
I should lower the quantity "n_rows - 1" by the quantity "diag - n_columns".
根据我的描述,这就是我的想法:
void diag_matrix(int** m, int righe, int colonne){//righe = rows, colonne = columns.
//M is the matrix.
// diag is the number of the diagonal I'm considering.
for(int diag = 1; diag < (righe + colonne); diag++){
int sum = 0;// the sum
int i = 0;// the counter of the cicle
int l = 0;// this is the value to riallign the row in case diag > column
int temp = diag;//I use this variable not to modify the value of diag.
// What I want is: when the column-index/row-index of the matrix reaches 0, the cicle will interrupt (after final iteration);
while(righe - i - l - 1 > 0 || diag - 1 - i > 0){
if (diag > colonne){//this condition changes l-value only if diag value is greater than column. Explanation outside the code
l = diag - colonne;//this is the value to subtract to row-index
temp = colonne;//this position is necessary to set column-index to its maxium.
}
sum = sum + m[righe - 1 - l - i][temp -1 - i];//pretty clear I think.
i++;//the i is incremented by one.
}// end of while-statement
cout << "Somma Diagonale " << diag << " = " << sum << ".\n";
}// end of for-statement
}//end of function declaration
显然它不起作用,但我无法弄清楚问题。
答案 0 :(得分:2)
只要坐标停留在矩阵内,您就可以简化代码,找到每个对角线的起始位置,然后单步执行矩阵。 像这样:
#include <iostream>
using namespace std;
void diag_matrix(int** m, int rows, int cols)
{
for (int diag = 1; diag < rows + cols; diag++)
{
int x, y;
if (diag < rows)
{
y = rows - diag;
x = 0;
}
else
{
y = 0;
x = diag - rows;
}
int sum = 0;
cout << "Summing diagonal #" << diag << ":";
while ((x < cols) && (y < rows))
{
sum += m[y][x];
cout << " " << m[y][x];
x++;
y++;
}
cout << " result: " << sum << "." << endl;
}
}
int main(int argc, char* argv[])
{
int rows = 5, cols = 3;
int **m = new int*[rows];
for (int i = 0; i < rows; i++)
m[i] = new int[cols];
m[0][0] = 52; m[0][1] = 35; m[0][2] = 5;
m[1][0] = 2; m[1][1] = 71; m[1][2] = 1;
m[2][0] = 3; m[2][1] = 60; m[2][2] = 25;
m[3][0] = 79; m[3][1] = 55; m[3][2] = 98;
m[4][0] = 47; m[4][1] = 15; m[4][2] = 66;
diag_matrix(m, rows, cols);
for (int i = 0; i < rows; i++)
delete[] m[i];
delete[] m;
return 0;
}
答案 1 :(得分:1)
(这里曾经有一段,但是第二眼看,你没有说出它所说的错误。)
由于您没有发布到代码评论,这是一个解决方案,而不是详细的代码审查。 (如果你想让原始方法工作,我建议在调试器中单步执行它并检查变量首先得到错误值的位置。)它有很多样板来编译和运行,但是你最感兴趣的部分是diag_sums()
及其评论。
这里的一个想法是使用OOP自动检查数组访问的范围。后者对于捕获一个错误等非常重要。如果需要,可以在生产中关闭它,但是当程序缓冲区溢出时,你真的不想让警告静音。这里的其他优化包括数据访问的位置和操作的强度减少:我们可以简单地提前计算每个对角线的长度,而不是检查每次迭代是否已经到达右边缘和下边缘。 / p>
由于带有 M 行的矩阵a
的对角线数 k 的定义等同于:所有元素a[i][j]
使得< em> M - k = i - j ,算法通过维持不变量来确保正确性,只要我们加1就保持不变量从 i 和 j 开始,当 i 或 j 为0时开始,并在 i时停止 = M 或 j = N ,也就是说,从左边或上边缘到右边遍历对角线的每一步或下边缘,以先到者为准。
#include <assert.h>
#include <iostream>
#include <stddef.h>
#include <stdlib.h>
#include <utility>
#include <vector>
using std::cin;
using std::cout;
template <typename T>
class matrix {
public:
matrix( const ptrdiff_t rows,
const ptrdiff_t cols,
std::vector<T>&& elems )
: rows_(rows), cols_(cols), elems_(elems)
{
assert( rows_ > 0 );
assert( cols_ > 0 );
assert( elems_.size() == static_cast<size_t>(rows_*cols_) );
}
matrix( const ptrdiff_t rows,
const ptrdiff_t cols,
const std::vector<T>& elems )
: matrix( rows, cols, std::move(std::vector<T>(elems)) )
{}
matrix( const matrix<T>& ) = default;
matrix( matrix<T>&& ) = default;
matrix& operator= ( const matrix<T>& ) = default;
matrix& operator= ( matrix<T>&& ) = default;
T& operator() ( const ptrdiff_t m, const ptrdiff_t n )
{
assert( m >= 0 && m < rows_ );
assert( n >= 0 && n < cols_ );
return elems_[static_cast<size_t>(m*cols_ + n)];
}
const T& operator() ( const ptrdiff_t m, const ptrdiff_t n ) const
{
/* Because this call does not modify any data, and the only reason the
* member function above cannot be const is that it returns a non-const
* reference to an element of elems, casting away the const qualifier
* internally and then returning a const reference is a safe way to
* re-use the code.
*/
matrix<T>& nonconst = *const_cast<matrix<T>*>(this);
return nonconst(m,n);
}
ptrdiff_t rows() const { return rows_; }
ptrdiff_t cols() const { return cols_; }
private:
ptrdiff_t rows_;
ptrdiff_t cols_;
std::vector<T> elems_;
};
template<typename T>
std::ostream& operator<< ( std::ostream& out, const matrix<T>& x )
/* Boilerplate to print a matrix. */
{
const ptrdiff_t m = x.rows(), n = x.cols();
for ( ptrdiff_t i = 0; i < m; ++i ) {
out << x(i,0);
for ( ptrdiff_t j = 1; j < n; ++j )
out << ' ' << x(i,j);
out << '\n';
} // end for
return out;
}
using elem_t = int;
std::vector<elem_t> diag_sums( const matrix<elem_t>& a )
/* Return a vector of all the diagonal sums of a.
*
* The first diagonal sum is a(rows-1,0)
* The second is a(rows-2,0) + a(rows-1,1)
* The third is a(rows-3,0) + a(rows-2,1) + a(rows-1,2)
* And so on. I.e., the kth diagonal is the sum of all elements a(i,j) such
* that i - j == rows - k.
*
* If a is a M×N matrix, there are M diagonals starting in column zero, and
* N-1 diagonals (excluding the one containing a(0,0) so we don't count it
* twice) starting in row 0. We process them bottom to top, then left to
* right.
*
* The number of elements in a diagonal starting at a(i,0) is min{M-i, N}. The
* number of elements in a diagonal starting at a(0,j) is min{M, N-j}. This is
* because a diagonal stops at either the bottom edge or the left edge of a.
*/
{
const ptrdiff_t m = a.rows(), n = a.cols();
std::vector<elem_t> result;
result.reserve( static_cast<size_t>(m + n - 1) );
for ( ptrdiff_t i = m-1; i > 0; --i ) {
elem_t sum = 0;
const ptrdiff_t nk = (m-i) < n ? (m-i) : n;
for ( ptrdiff_t k = 0; k < nk; ++k )
sum += a(i+k, k);
result.emplace_back(sum);
} // end for i
for ( ptrdiff_t j = 0; j < n; ++j ) {
elem_t sum = 0;
const ptrdiff_t nk = m < (n-j) ? m : (n-j);
for ( ptrdiff_t k = 0; k < nk; ++k )
sum += a(k, j+k);
result.emplace_back(sum);
} // end for j
return result;
}
matrix<elem_t> read_input_matrix( const int row, const int column )
/* Reads in row*column consecutive elements from cin and packs them into a
* matrix<elem_t>.
*/
{
assert(row > 0);
assert(column > 0);
const ptrdiff_t nelements = row*column;
assert(nelements > 0); // Check for overflow.
std::vector<elem_t> result;
result.reserve(static_cast<size_t>(nelements));
for ( ptrdiff_t i = nelements; i > 0; --i ) {
int x;
cin >> x;
assert(cin.good());
result.push_back(x);
}
return matrix<elem_t>( row,
column,
std::move(result) );
}
template<typename T>
bool print_sequence( const T& container )
/* Prints the contents of a container in the format
* "{47, 94, 124, 160, 148, 36, 5}".
*/
{
cout << "{";
if ( container.begin() != container.end() )
cout << *container.begin();
for ( auto it = container.begin() + 1; it < container.end(); ++it )
cout << ", " << *it;
cout << "}\n";
return cout.good();
}
/* A simple test driver that reads in the number of rows, the number of
* columns, and then row*columns int values, from standard input. It
* then passes the result to diag_matrix(), E.g.:
*
* 5 3
* 52 35 5
* 2 71 1
* 3 60 25
* 79 55 98
* 47 15 66
*/
int main()
{
int rows, columns;
cin >> rows;
cin >> columns;
assert(cin.good());
const matrix<elem_t> input_matrix = read_input_matrix( rows, columns );
// cout << input_matrix; // Instrumentation.
const std::vector<elem_t> sums = diag_sums(input_matrix);
print_sequence(sums);
return EXIT_SUCCESS;
}
您也可以print_sequence(diag_sums(read_input_matrix( rows, columns )))
。