我正在尝试使用Azure Stream Analytics计算一些线性回归。
设置: 传感器向IoT-Hub发送温度和时间,Stream-Analytics正在使用SlidingWindow监听IoT-Hub,并应在此窗口中计算温度趋势(使用线性回归)。
事件如下所示:
{"deviceId":"sensor_1","temp":322.3376736446427,"time":1517500183940}
到目前为止我得到的SQL是:
WITH Step1 AS
(
select time AS x, avg(time) over () AS x_bar,
temp AS y, avg(temp) over () AS y_bar
FROM inputStream
GROUP BY SlidingWindow(second,10)
),
Step2 AS (
SELECT (sum((x - x_bar) * (y - y_bar)) / sum((x - x_bar) * (x - x_bar))) AS slope,
max(x_bar) AS x_bar_max,
max(y_bar) AS y_bar_max
FROM Step1
),
FinalStep AS (
SELECT slope,
y_bar_max - x_bar_max * slope AS intercept
FROM Step2
)
SELECT * INTO outputEventHub FROM FinalStep
来自here的原始线性回归SQL模板如下所示:
select slope,
y_bar_max - x_bar_max * slope as intercept
from (
select sum((x - x_bar) * (y - y_bar)) / sum((x - x_bar) * (x - x_bar)) as slope,
max(x_bar) as x_bar_max,
max(y_bar) as y_bar_max
from (
select x, avg(x) over () as x_bar,
y, avg(y) over () as y_bar
from ols) s;
)
如果您在没有Stream Analytics的情况下知道更好的方法,我也很好。请提前分享您的想法和感谢!
答案 0 :(得分:1)