我尝试将卷积图层应用于形状 [256,256,3] 的图片 当我直接使用图像的张量时出现错误
conv1 = conv2d(input,W_conv1) +b_conv1 #<=== error
错误消息:
ValueError: Shape must be rank 4 but is rank 3 for 'Conv2D' (op: 'Conv2D')
with input shapes: [256,256,3], [3,3,3,1].
但当我重塑函数conv2d正常工作时
x_image = tf.reshape(input,[-1,256,256,3])
conv1 = conv2d(x_image,W_conv1) +b_conv1
如果我必须重塑张量,那么在我的情况下重塑的最佳价值是什么?
import tensorflow as tf
import numpy as np
from PIL import Image
def img_to_tensor(img) :
return tf.convert_to_tensor(img, np.float32)
def weight_generater(shape):
return tf.Variable(tf.truncated_normal(shape,stddev=0.1))
def bias_generater(shape):
return tf.Variable(tf.constant(.1,shape=shape))
def conv2d(x,W):
return tf.nn.conv2d(x,W,[1,1,1,1],'SAME')
def pool_max_2x2(x):
return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,1,1,1],padding='SAME')
#read image
img = Image.open("img.tif")
sess = tf.InteractiveSession()
#convetir image to tensor
input = img_to_tensor(img).eval()
#print(input)
# get img dimension
img_dimension = tf.shape(input).eval()
print(img_dimension)
height,width,channel=img_dimension
filter_size = 3
feature_map = 32
x = tf.placeholder(tf.float32,shape=[height*width*channel])
y = tf.placeholder(tf.float32,shape=21)
# generate weigh [kernal size, kernal size,channel,number of filters]
W_conv1 = weight_generater([filter_size,filter_size,channel,1])
#for each filter W has his specific bais
b_conv1 = bias_generater([feature_map])
""" I must reshape the picture
x_image = tf.reshape(input,[-1,256,256,3])
"""
conv1 = conv2d(input,W_conv1) +b_conv1 #<=== error
h_conv1 = tf.nn.relu(conv1)
h_pool1 = pool_max_2x2(h_conv1)
layer1_dimension = tf.shape(h_pool1).eval()
print(layer1_dimension)
答案 0 :(得分:6)
第一个维度是批量大小。如果您一次输入1个图像,您可以简单地创建第一个维度1并且不会更改任何数据,只需将索引更改为4D:
function countWord(){
var words = [];
var count = [];
for( var i = 0; i < array.length; i++ ){
}
}
如果您在第一维中使用x_image = tf.reshape(input, [1, 256, 256, 3])
对其进行整形,那么您所做的就是说您将输入4D批图像(形状为-1
),并允许批量大小为是动态的(这是常见的)。