我的输入是模式为PIL.Image.Image
或RGB
的{{1}},我需要用从每个像素的RGB值计算出的3个浮点值来填充RGBA
。输出数组应可通过像素坐标索引。我发现以下方法可以做到:
numpy.ndarray
它有效,但是我怀疑有更好和/或更快速的方法。请告诉我是否有一个,但也没有。
NB:我知道我可以import numpy as np
from PIL import Image
def generate_ycbcr(img: Image.Image):
for r, g, b in img.getdata():
yield 0.299 * r + 0.587 * g + 0.114 * b
yield 128 - 0.168736 * r - 0.331264 * g + 0.5 * b
yield 128 + 0.5 * r - 0.418688 * g - 0.081312 * b
def get_ycbcr_arr(img: Image.Image):
width, height = img.size
arr = np.fromiter(generate_ycbcr(img), float, height * width * 3)
return arr.reshape(height, width, 3)
将图像convert()
,然后从中填充YCbCr
,但是转换值被舍入为整数值,这不是我所需要的
答案 0 :(得分:2)
对于初学者,您可以将图像直接转换为numpy数组,并使用矢量化操作来完成所需的操作:
def get_ycbcr_vectorized(img: Image.Image):
R,G,B = np.array(img).transpose(2,0,1)[:3] # ignore alpha if present
Y = 0.299 * R + 0.587 * G + 0.114 * B
Cb = 128 - 0.168736 * R - 0.331264 * G + 0.5 * B
Cr = 128 + 0.5 * R - 0.418688 * G - 0.081312 * B
return np.array([Y,Cb,Cr]).transpose(1,2,0)
print(np.array_equal(get_ycbcr_arr(img), get_ycbcr_vectorized(img))) # True
但是,您确定直接转换为'YCbCr'
会有很大不同吗?我测试了上述函数中定义的转换:
import matplotlib.pyplot as plt
def aux():
# generate every integer R/G/B combination
R,G,B = np.ogrid[:256,:256,:256]
Y = 0.299 * R + 0.587 * G + 0.114 * B
Cb = 128 - 0.168736 * R - 0.331264 * G + 0.5 * B
Cr = 128 + 0.5 * R - 0.418688 * G - 0.081312 * B
# plot the maximum error along one of the RGB channels
for arr,label in zip([Y,Cb,Cr], ['Y', 'Cb', 'Cr']):
plt.figure()
plt.imshow((arr - arr.round()).max(-1))
plt.xlabel('R')
plt.ylabel('G')
plt.title(f'max_B ({label} - {label}.round())')
plt.colorbar()
aux()
plt.show()
结果表明,最大的绝对误差为0.5,尽管这些误差遍及整个像素:
是的,这可能是相对较大的相对错误,但这不一定是一个大问题。
如果内置转换足够:
arr = np.array(img.convert('YCbCr'))
是您所需要的。