我是初学者,深入学习并坚持这个问题。
import tensorflow as tf
import numpy as np
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.utils import shuffle
from sklearn.model_selection import train_test_split
#define the one hot encode function
def one_hot_encode(labels):
n_labels = len(labels)
n_unique_labels = len(np.unique(labels))
one_hot_encode = np.zeros((n_labels,n_unique_labels))
one_hot_encode[np.arange(n_labels), labels] = 1
return one_hot_encode
#Read the sonar dataset
df = pd.read_csv('sonar.csv')
print(len(df.columns))
X = df[df.columns[0:60]].values
y=df[df.columns[60]]
#encode the dependent variable containing categorical values
encoder = LabelEncoder()
encoder.fit(y)
y = encoder.transform(y)
Y = one_hot_encode(y)
#Transform the data in training and testing
X,Y = shuffle(X,Y,random_state=1)
train_x,test_x,train_y,test_y = train_test_split(X,Y,test_size=0.20, random_state=42)
#define and initialize the variables to work with the tensors
learning_rate = 0.1
training_epochs = 1000
#Array to store cost obtained in each epoch
cost_history = np.empty(shape=[1],dtype=float)
n_dim = X.shape[1]
n_class = 2
x = tf.placeholder(tf.float32,[None,n_dim])
W = tf.Variable(tf.zeros([n_dim,n_class]))
b = tf.Variable(tf.zeros([n_class]))
#initialize all variables.
#define the cost function
y_ = tf.placeholder(tf.float32,[None,n_class])
y = tf.matmul(x, W)+ b
init = tf.global_variables_initializer()#wrong position
cost_function = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=y,labels=y_))
training_step = tf.train.AdamOptimizer(learning_rate).minimize(cost_function)
init = tf.global_variables_initializer()#correct position
#initialize the session
sess = tf.Session()
sess.run(init)
mse_history = []
#calculate the cost for each epoch
for epoch in range(training_epochs):
sess.run(training_step,feed_dict={x:train_x,y_:train_y})
cost = sess.run(cost_function,feed_dict={x: train_x,y_: train_y})
cost_history = np.append(cost_history,cost)
print('epoch : ', epoch, ' - ', 'cost: ', cost)
pred_y = sess.run(y, feed_dict={x: test_x})
print(pred_y)
#Calculate Accuracy
correct_prediction = tf.equal(tf.argmax(pred_y,1), tf.argmax(test_y,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(sess.run(accuracy))
sess.close()
在上面的代码中如果我使用init = tf.global_variables_initializer() 在 AdamOptimizer 之上然后它会给出错误,但如果我之后使用它 AdamOptimizer 然后它运行正常。是什么原因? 虽然它在两个位置都能正常使用 GradientDescentOptimizer 。
答案 0 :(得分:2)
查看documentation init = tf.global_variables_initializer()
与init = tf.variables_initializer(tf.global_variables())
相同
tf.train.AdamOptimizer
需要初始化的一些内部变量(均值统计等)
<tf.Variable 'beta1_power:0' shape=() dtype=float32_ref>
<tf.Variable 'beta2_power:0' shape=() dtype=float32_ref>
<tf.Variable 'x/Adam:0' shape=(2, 1) dtype=float32_ref> # 1st moment vector
<tf.Variable 'x/Adam_1:0' shape=(2, 1) dtype=float32_ref> # 2nd moment vector
documentation告诉您如何应用更新。
相反,vanilla梯度下降优化器tf.train.GradientDescentOptimizer
不依赖于任何变量。有区别。
现在,在tf.train.AdamOptimizer
可以使用其变量之前,需要在某个时刻初始化这些变量。
要创建初始化所有必需变量的操作init
,此操作init
需要知道运行程序所需的变量。因此,需要将放在 tf.train.AdamOptimizer
之后。
如果您要将init = tf.global_variables_initializer()
放在 tf.train.AdamOptimizer
之前
init_op = tf.variables_initializer(tf.global_variables())
optimize_op = tf.train.AdamOptimizer(0.1).minimize(cost_function)
你会得到
Attempting to use uninitialized value beta1_power
告诉您,tf.train.AdamOptimizer
尝试访问尚未初始化的<tf.Variable 'beta1_power:0' shape=() dtype=float32_ref>
。
所以
# ...
... = tf.train.AdamOptimizer(0.1).minimize(cost_function)
# ...
init = tf.global_variables_initializer()
是唯一正确的方法。您可以通过放置
来检查哪些变量可以初始化for variable in tf.global_variables():
print(variable)
在源代码中。
考虑最小化二次形式0.5x'Ax + bx + c
的示例。在TensorFlow中,这将是
import tensorflow as tf
import numpy as np
x = tf.Variable(np.random.rand(2, 1), dtype=tf.float32, name="x")
# we already make clear, that we are not going to optimize these variables
b = tf.constant([[5], [6]], dtype=tf.float32, name="b")
A = tf.constant([[9, 2], [2, 10]], dtype=tf.float32, name="A")
cost_function = 0.5 * tf.matmul(tf.matmul(tf.transpose(x), A), x) - tf.matmul(tf.transpose(b), x) + 42
for variable in tf.global_variables():
print('before ADAM: global_variables_initializer would init {}'.format(variable))
optimize_op = tf.train.AdamOptimizer(0.1).minimize(cost_function)
for variable in tf.global_variables():
print('after ADAM: global_variables_initializer would init
{}&#39; .format(变量))
init_op = tf.variables_initializer(tf.global_variables())
with tf.Session() as sess:
sess.run(init_op)
for i in range(5):
loss, _ = sess.run([cost_function, optimize_op])
print(loss)
输出
before ADAM global_variables_initializer would init <tf.Variable 'x:0' shape=(2, 1) dtype=float32_ref>
after ADAM global_variables_initializer would init <tf.Variable 'x:0' shape=(2, 1) dtype=float32_ref>
after ADAM global_variables_initializer would init <tf.Variable 'beta1_power:0' shape=() dtype=float32_ref>
after ADAM global_variables_initializer would init <tf.Variable 'beta2_power:0' shape=() dtype=float32_ref>
after ADAM global_variables_initializer would init <tf.Variable 'x/Adam:0' shape=(2, 1) dtype=float32_ref>
after ADAM global_variables_initializer would init <tf.Variable 'x/Adam_1:0' shape=(2, 1) dtype=float32_ref>
在将tf.global_variables_initializer()
放在ADAM定义init = tf.global_variables_initializer()
之前时,tf.train.AdamOptimizer
看不到ADAM所需的变量。使用GradientDescentOptimizer时,值为
before ADAM global_variables_initializer would init <tf.Variable 'x:0' shape=(2, 1) dtype=float32_ref>
after ADAM global_variables_initializer would init <tf.Variable 'x:0' shape=(2, 1) dtype=float32_ref>
因此在优化器之前和之后没有任何改变。
答案 1 :(得分:0)
根据我的经验,init = tf.global_variables_initializer()
只会初始化在之前声明的变量。
例如,考虑以下代码:
variable_1 = tf.get_variable("v_1",[5,5],tf.float32,initializer=tf.zeros_initializer)
init = tf.global_variables_initializer()
variable_2 = tf.get_variable("v_2",[5,5],tf.float32,initializer=tf.zeros_initializer)
以下代码将在variable_1
中打印数字(5x5,全为零):
with tf.Session() as sess:
sess.run(init)
print(sess.run(variable_1))
但是,以下代码将产生“尝试使用未初始化的值”错误:
with tf.Session() as sess:
sess.run(init)
print(sess.run(variable_2))
总结一下,在大多数情况下,只需将init = tf.global_variables_initializer()
放在所有其他变量之后。