R中分层样本的单向ANOVA

时间:2018-01-26 12:04:09

标签: r sampling anova survey

我有一个分层的样本,有三组(“a”,“b”,“c”),从更大的人口N中抽取。所有组都有30个观察结果,但它们在N中的比例是不相等的,因此他们的抽样权重不同。

我使用R中的survey包计算汇总统计和线性回归模型,并想知道如何计算单向ANOVA校正调查设计(如有必要)。

我的假设是,如果我错了,请纠正我,对于体重较小的人群,方差的标准误差通常应该更高,因此不考虑调查设计的简单方差分析不应该要可靠。

这是一个例子。任何帮助,将不胜感激。

## Oneway- ANOVA tests in R for surveys with stratified sampling-design
library("survey")
# create test data
test.df<-data.frame(
  id=1:90,
  variable=c(rnorm(n = 30,mean=150,sd=10),
             rnorm(n = 30,mean=150,sd=10),
             rnorm(n = 30,mean=140,sd=10)),
  groups=c(rep("a",30),
  rep("b",30),
  rep("c",30)),
  weights=c(rep(1,30), # undersampled
  rep(1,30),
  rep(100,30))) # oversampled


# correct for survey design
test.df.survey<-svydesign(id=~id,
                           strata=~groups,
                           weights=~weights,
                           data=test.df)

## descriptive statistics
# boxplot
svyboxplot(~variable~groups,test.df.survey)
# means
svyby(~variable,~groups,test.df.survey,svymean)
# variances
svyby(~variable,~groups,test.df.survey,svyvar)


### ANOVA ###
## One-way ANOVA without correcting for survey design
summary(aov(formula = variable~groups,data = test.df))

2 个答案:

答案 0 :(得分:2)

嗯,这是一个有趣的问题,据我所知,在单向anova中考虑权重是很困难的。因此,我决定告诉你我解决这个问题的方式。

我将使用双向anova然后进行特殊测试。

首先,让我们根据您的数据构建一个线性模型,并检查它的外观。

library(car)
library(agricolae)
model.lm = lm(variable ~ groups * weights, data = test.df)
shapiro.test(resid(model.lm))

Shapiro-Wilk normality test

data:  resid(model.lm)
W = 0.98238, p-value = 0.263

leveneTest(variable ~ groups * factor(weights), data = test.df)
Levene's Test for Homogeneity of Variance (center = median)
Df F value  Pr(>F)  
group  2  2.6422 0.07692 .
      87                  
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

分布接近正常,各组之间的方差不同,因此方差不均匀 - 应该用于参数测试 - anova。不管怎样,让我们​​进行测试。

检查我们的数据是否符合此测试的几个图表:

hist(resid(model.lm))
plot(model.lm)

quite normal enter image description here enter image description here enter image description here enter image description here

Here是对情节的解释,它们实际上并不坏看。

让我们运行双向anova:

anova(model.lm)
Analysis of Variance Table

Response: variable
          Df Sum Sq Mean Sq F value    Pr(>F)    
groups     2 2267.8 1133.88  9.9566 0.0001277 ***
Residuals 87 9907.8  113.88                      
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

如您所见,结果与您的结果非常接近。一些事后测试:

(result.hsd = HSD.test(model.lm, list('groups', 'weights')))
$statistics
   MSerror Df     Mean     CV      MSD
  113.8831 87 147.8164 7.2195 6.570186

$parameters
   test         name.t ntr StudentizedRange alpha
  Tukey groups:weights   3         3.372163  0.05

$means
      variable       std  r      Min      Max      Q25      Q50      Q75
a:1   150.8601 11.571185 30 113.3240 173.0429 145.2710 151.9689 157.8051
b:1   151.8486  8.330029 30 137.1907 176.9833 147.8404 150.3161 154.7321
c:100 140.7404 11.762979 30 118.0823 163.9753 131.6112 141.1810 147.8231

$comparison
NULL

$groups
      variable groups
b:1   151.8486      a
a:1   150.8601      a
c:100 140.7404      b

attr(,"class")
[1] "group"

也许有一些不同的方式:

aov_cont<- aov(test.df$variable ~ test.df$groups * test.df$weights)
summary(aov_cont)
               Df Sum Sq Mean Sq F value   Pr(>F)    
test.df$groups  2   2268  1133.9   9.957 0.000128 ***
Residuals      87   9908   113.9                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(TukeyHSD(aov_cont))
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = test.df$variable ~ test.df$groups * test.df$weights)

$`test.df$groups`
           diff        lwr       upr     p adj
b-a   0.9884608  -5.581725  7.558647 0.9315792
c-a -10.1197048 -16.689891 -3.549519 0.0011934
c-b -11.1081657 -17.678352 -4.537980 0.0003461

总结一下,结果非常接近你的。当你确定你的变量是独立的 - 添加模型时,我会用(*)符号或(+)运行双向anova。

权重较大的群组c与群组ab大不相同。

答案 1 :(得分:1)

根据我们研究所的主要统计学家的说法,在任何常见的建模环境中都不容易实现这种分析。原因是 ANOVA ANCOVA 是线性模型,在一般线性模型出现之后没有进一步发展(后来 70年代的广义线性模型 - GLMs )。

正态线性回归模型产生与 ANOVA 实际上相同的结果,但在变量选择方面更灵活。由于 GLMs (参见R中的survey包)存在加权方法,因此没有必要为 ANOVA 中的分层抽样设计开发权重方法......只需使用 GLM 即可。

summary(svyglm(variable~groups,test.df.survey))