如何在Pandas的文本中获取特定单词的热门编码?

时间:2018-01-12 12:40:44

标签: python pandas scipy one-hot-encoding

假设我有一个数据框和单词列表,即

toxic = ['bad','horrible','disguisting']

df = pd.DataFrame({'text':['You look horrible','You are good','you are bad and disguisting']})

main = pd.concat([df,pd.DataFrame(columns=toxic)]).fillna(0)

samp = main['text'].str.split().apply(lambda x : [i for i in toxic if i in x])

for i,j in enumerate(samp):
    for k in j:
        main.loc[i,k] = 1 

这导致:

   bad  disguisting  horrible                         text
0    0            0         1            You look horrible
1    0            0         0                 You are good
2    1            1         0  you are bad and disguisting

这比get_dummies快一点,但是当有大量数据时,pandas中的循环并不明显。

我尝试使用str.get_dummies,这将对系列中的每个单词进行热编码,这会使其慢一点。

pd.concat([df,main['text'].str.get_dummies(' ')[toxic]],1)

                          text  bad  horrible  disguisting
0            You look horrible    0         1            0
1                 You are good    0         0            0
2  you are bad and disguisting    1         0            1

如果我在scipy中尝试相同的话。

from sklearn import preprocessing
le = preprocessing.LabelEncoder()
le.fit(toxic)
main['text'].str.split().apply(le.transform)

这会导致Value Error,y contains new labels。有没有办法忽略scipy中的错误?

如何提高实现目标的速度,还有其他快速的方法吗?

2 个答案:

答案 0 :(得分:3)

使用sklearn.feature_extraction.text.CountVectorizer

from sklearn.feature_extraction.text import CountVectorizer

cv = CountVectorizer(vocabulary=toxic)

r = pd.SparseDataFrame(cv.fit_transform(df['text']), 
                       df.index,
                       cv.get_feature_names(), 
                       default_fill_value=0)

结果:

In [127]: r
Out[127]:
   bad  horrible  disguisting
0    0         1            0
1    0         0            0
2    1         0            1

In [128]: type(r)
Out[128]: pandas.core.sparse.frame.SparseDataFrame

In [129]: r.info()
<class 'pandas.core.sparse.frame.SparseDataFrame'>
RangeIndex: 3 entries, 0 to 2
Data columns (total 3 columns):
bad            3 non-null int64
horrible       3 non-null int64
disguisting    3 non-null int64
dtypes: int64(3)
memory usage: 104.0 bytes

In [130]: r.memory_usage()
Out[130]:
Index          80
bad             8   #  <--- NOTE: it's using 8 bytes (1x int64) instead of 24 bytes for three values (3x8)
horrible        8
disguisting     8
dtype: int64

将SparseDataFrame与原始DataFrame连接:

In [137]: r2 = df.join(r)

In [138]: r2
Out[138]:
                          text  bad  horrible  disguisting
0            You look horrible    0         1            0
1                 You are good    0         0            0
2  you are bad and disguisting    1         0            1

In [139]: r2.memory_usage()
Out[139]:
Index          80
text           24
bad             8
horrible        8
disguisting     8
dtype: int64

In [140]: type(r2)
Out[140]: pandas.core.frame.DataFrame

In [141]: type(r2['horrible'])
Out[141]: pandas.core.sparse.series.SparseSeries

In [142]: type(r2['text'])
Out[142]: pandas.core.series.Series
在较旧的Pandas版本中的PS Sparsed列在使用常规DataFrame加入SparsedDataFrame之后放松了它们的稀疏性(得到了批评),现在我们可以混合使用常规Series(列)和SparseSeries - 非常好的功能!

答案 1 :(得分:0)

不赞成使用的答案,请参阅发行说明:

SparseSeries和SparseDataFrame在熊猫1.0.0中被删除。本迁移指南旨在帮助您从以前的版本进行迁移。

Pandas 1.0.5解决方案:

if (
    productTitle != "" &&
    productPrice != "" &&
    // Number.isInteger(productPrice) &&
    // productPrice > 0 &&
    // productPrice < 1000 &&
    productDescription != ""
) {
    let productData = {
        title: productTitle,
        price: productPrice,
        description: productDescription,
    };

    // .....
} else {
    console.log("All fields required");
}