我正在关注Tensorflow中的图像分类教程:http://cv-tricks.com/tensorflow-tutorial/training-convolutional-neural-network-for-image-classification/。对单个图像的训练和测试工作正常。然而,我对大量图像进行预测的代码非常慢,它消耗100%的CPU和几乎最大的内存!对于2700张图片,需要超过24小时!这不实用。有没有办法像批处理培训一样进行批量测试?请注意,我还需要对图像执行规范化。这是我的代码:
import tensorflow as tf
import numpy as np
import os,glob,cv2
import sys,argparse
# First, pass the path of the image
os.chdir("/somepath")
i = 0
files = glob.glob('*.jpg')
files.extend(glob.glob('*.JPG'))
totalNumber = len(files)
print("total number of images is:", totalNumber)
image_size=128
num_channels=3
text_file = open("Results.txt", "w")
for file in files:
images = []
filename = file
print(filename)
text_file.write("\n")
text_file.write(filename)
# Reading the image using OpenCV
image = cv2.imread(filename)
# Resizing the image to our desired size and preprocessing will be done exactly as done during training
image = cv2.resize(image, (image_size, image_size),0,0, cv2.INTER_LINEAR)
images.append(image)
images = np.array(images, dtype=np.uint8)
images = images.astype('float32')
images = np.multiply(images, 1.0/255.0)
#The input to the network is of shape [None image_size image_size num_channels]. Hence we reshape.
x_batch = images.reshape(1, image_size,image_size,num_channels)
## Let us restore the saved model
sess = tf.Session()
# Step-1: Recreate the network graph. At this step only graph is created.
saver = tf.train.import_meta_graph('pathtomymeta/my_model-9909.meta')
# Step-2: Now let's load the weights saved using the restore method.
saver.restore(sess, tf.train.latest_checkpoint('pathtomycheckpoints/checkpoints/'))
# Accessing the default graph which we have restored
graph = tf.get_default_graph()
# Now, let's get hold of the op that we can be processed to get the output.
# In the original network y_pred is the tensor that is the prediction of the network
y_pred = graph.get_tensor_by_name("y_pred:0")
## Let's feed the images to the input placeholders
x = graph.get_tensor_by_name("x:0")
y_true = graph.get_tensor_by_name("y_true:0")
y_test_images = np.zeros((1, 3)) #np.zeros((1, 2))
### Creating the feed_dict that is required to be fed to calculate y_pred
feed_dict_testing = {x: x_batch, y_true: y_test_images}
result = sess.run(y_pred, feed_dict=feed_dict_testing)
# result is of this format [probabiliy_of_rose probability_of_sunflower]
print(result)
text_file.write("\n")
text_file.write('%s' % result[i,0])
text_file.write("\t")
text_file.write('%s' % result[i,1])
text_file.write("\t")
text_file.write('%s' % result[i,2])
text_file.close()
答案 0 :(得分:2)
我认为你应该考虑一个非常明显的优化"在你的代码中。您正在进行for循环,并且在每次迭代时,您正在加载图像,还要加载模型,构建图形,然后进行预测。
但是加载模型和构建图形实际上并不依赖于for循环或其中的任何变量(如输入图像)。你的for循环中的大部分时间都可能用于加载模型,而不是进行实际预测。您可以使用分析器查找。
所以我建议你只需加载模型并在for循环之前构建一次图形,然后在for循环中使用以下两行:
feed_dict_testing = {x: x_batch, y_true: y_test_images}
result = sess.run(y_pred, feed_dict=feed_dict_testing)
应该快得多。它可能仍然很慢,但那是因为评估CPU上的大型神经网络本身就很慢。