我有以下代码,它从本地磁盘上的文件中读取一批10张图像。
问题是代码似乎运行得很慢。运行完成大约需要5-6分钟。包含图像的目录包含大约。 25.000张图片。
代码是正确的还是我做了些蠢事?
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import tensorflow as tf
image_width = 202
image_height = 180
num_channels = 3
filenames = tf.train.match_filenames_once("./train/Resized/*.jpg")
def read_image(filename_queue):
image_reader = tf.WholeFileReader()
key, image_filename = image_reader.read(filename_queue)
image = tf.image.decode_jpeg(image_filename)
image.set_shape((image_height, image_width, 3))
return image
def input_pipeline(filenames, batch_size, num_epochs=None):
filename_queue = tf.train.string_input_producer(filenames, num_epochs=num_epochs, shuffle=True)
input_image = read_image(filename_queue)
min_after_dequeue = 10000
capacity = min_after_dequeue + 3 * batch_size
image_batch = tf.train.shuffle_batch(
[input_image], batch_size=batch_size, capacity=capacity,
min_after_dequeue=min_after_dequeue)
return image_batch
new_batch = input_pipeline(filenames, 10)
with tf.Session() as sess:
# Required to get the filename matching to run.
tf.global_variables_initializer().run()
# Coordinate the loading of image files.
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
b1 = sess.run(new_batch)
# Finish off the filename queue coordinator.
coord.request_stop()
coord.join(threads)
答案 0 :(得分:1)
将min_after_dequeue减少到1000并尝试一次。请查看以下时间轴,了解不同的min_after_dequeue值。
min_after_dequeue = 2000 => 2.1 sec to finish
min_after_dequeue = 100 => 0.13 sec to finish
请遵循以获取时间表
from tensorflow.python.client import timeline
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
b1 = sess.run(new_batch,options=run_options,run_metadata=run_metadata)
# Create the Timeline object, and write it to a json
tl = timeline.Timeline(run_metadata.step_stats)
ctf = tl.generate_chrome_trace_format()
with open('timelinestack1.json', 'w') as f:
f.write(ctf)
此外,请确保您的所有图片都与您提到的尺寸相同。否则,请在set_shape()之前使用下面一行。
image = tf.image.resize_images(imaged, [224, 224])
我希望我给出了合理的答案。