提前一步预测样本外准确度和残差

时间:2018-01-09 08:05:30

标签: r time-series

我有一个包含30个变量的时间序列my.ts,以及hts的{​​{1}}个对象。 hts只有一个级别。我使用my.hts= hts(my.ts)来拟合样本内数据。我想要的是样本数据中提前一步预测的准确度量和残差。

我知道在auto.arima包中,有一个例子说明了这一点:

forecast

但是,我不确定如何在# Fit model to first few years of AirPassengers data air.model <- Arima(window(AirPassengers,end=1956+11/12),order=c(0,1,1), seasonal=list(order=c(0,1,1),period=12),lambda=0) plot(forecast(air.model,h=48)) lines(AirPassengers) # Apply fitted model to later data air.model2 <- Arima(window(AirPassengers,start=1957),model=air.model) # Forecast accuracy measures on the log scale. # in-sample one-step forecasts. accuracy(air.model) # out-of-sample one-step forecasts. accuracy(air.model2) # out-of-sample multi-step forecasts accuracy(forecast(air.model,h=48,lambda=NULL), log(window(AirPassengers,start=1957))) 中执行此操作。提前致谢。

0 个答案:

没有答案