Python中时间序列中两个变量的相关性?

时间:2011-01-26 20:18:38

标签: python statistics

如果我有两个不同时间序列的数据集,是否有一种简单的方法可以在python中找到两组之间的相关性?

例如:

# [ (dateTimeObject, y, z) ... ]
x = [ (8:00am, 12, 8), (8:10am, 15, 10) .... ]

我如何在Python中获得y和z的相关性?

5 个答案:

答案 0 :(得分:28)

这里的吸收速度有点慢。 pandas(http://github.com/wesm/pandas和pandas.sourceforge.net)可能是你最好的选择。我有偏见因为我写了但是:

In [7]: ts1
Out[7]: 
2000-01-03 00:00:00    -0.945653010936
2000-01-04 00:00:00    0.759529904445
2000-01-05 00:00:00    0.177646448683
2000-01-06 00:00:00    0.579750822716
2000-01-07 00:00:00    -0.0752734982291
2000-01-10 00:00:00    0.138730447557
2000-01-11 00:00:00    -0.506961851495

In [8]: ts2
Out[8]: 
2000-01-03 00:00:00    1.10436688823
2000-01-04 00:00:00    0.110075215713
2000-01-05 00:00:00    -0.372818939799
2000-01-06 00:00:00    -0.520443811368
2000-01-07 00:00:00    -0.455928700936
2000-01-10 00:00:00    1.49624355051
2000-01-11 00:00:00    -0.204383054598

In [9]: ts1.corr(ts2)
Out[9]: -0.34768587480980645

值得注意的是,如果您的数据是在不同的日期集上,它将计算成对相关性。它还会自动排除NaN值!

答案 1 :(得分:8)

Scipy有一个statistics模块,具有相关功能。

from scipy import stats
# Y and Z are numpy arrays or lists of variables 
stats.pearsonr(Y, Z)

答案 2 :(得分:4)

您可以通过协方差矩阵或相关系数来实现。 http://docs.scipy.org/doc/numpy/reference/generated/numpy.cov.htmlhttp://docs.scipy.org/doc/numpy/reference/generated/numpy.corrcoef.html是这方面的文档功能,前者还附带了一个如何使用它的示例(corrcoef使用非常相似)。

>>> x = [ (None, 12, 8), (None, 15, 10), (None, 10, 6) ]
>>> data = numpy.array([[e[1] for e in x], [e[2] for e in x]])
>>> numpy.corrcoef(data)
array([[ 1.        ,  0.99339927],
       [ 0.99339927,  1.        ]])

答案 3 :(得分:1)

使用numpy:

from numpy import *
v = [ ('k', 1, 2), ('l', 2, 4), ('m', 13, 9) ]
corrcoef([ a[1] for a in v ], [ a[2] for a in v ])[0,1]

答案 4 :(得分:0)