构造具有固定相关性的2个时间序列随机变量

时间:2014-03-08 17:23:16

标签: python r time-series correlation

是否有一种简单的方法来生成具有固定相关性的两个时间序列?例如0.5。

有人知道R或Python的解决方案吗? 谢谢!

1 个答案:

答案 0 :(得分:1)

我认为这个问题很普遍。它不仅限于时间序列。你要问的是生成具有已知协方差的2d随机变量。 r==0.5, std1=1 and std2=2会转换为[[1,1],[1,4]]的协方差矩阵。因此,如果我们假设数据是多维正态分布的,我们可以生成这样一个随机变量:

In [42]:
import numpy as np
val=np.random.multivariate_normal((0,0),[[1,1],[1,4]],1000)
In [43]:

np.corrcoef(val.T)
Out[43]:
array([[ 1.      ,  0.488883],
       [ 0.488883,  1.      ]])
In [44]:

np.cov(val.T)
Out[44]:
array([[ 1.03693888,  0.96490767],
       [ 0.96490767,  3.75671707]])
In [45]:

val=np.random.multivariate_normal((0,0),[[1,1],[1,4]],10)
In [46]:

np.corrcoef(val.T)
Out[46]:
array([[ 1.        ,  0.56807297],
       [ 0.56807297,  1.        ]])
In [48]:

val[:,0]
Out[48]:
array([-0.77425116,  0.35758601, -1.21668939, -0.95127533, -0.5714381 ,
        0.87530824,  0.9594394 ,  1.30123373,  1.92511929,  0.98070711])
In [49]:

val[:,1]
Out[49]:
array([-1.75698285,  2.24011423, -3.5129411 , -1.33889305,  2.32720257,
        0.53750133,  3.23935645,  2.96819425, -0.72551024,  3.0743096 ])

如本例所示,如果您的样本量很小,则生成的随机变量可能会显着偏离r=0.5