我正在尝试在Dynamic room pricing model for hotel revenue management systems上构建一份白皮书的实现。如果此链接将来死亡,我会在相关部分粘贴:
到目前为止,我目前的实际情况已经大大破坏了,因为我真的不完全理解如何解决非线性最大化方程。
# magical lookup table that returns demand based on those inputs
# this will eventually be a db lookup against past years rental activity and not hardcoded to a specific value
def demand(dateFirstNight, duration):
return 1
# magical function that fetches the price we have allocated for a room on this date to existing customers
# this should be a db lookup against previous stays, and not hardcoded to a specific value
def getPrice(date):
return 75
# Typical room base price
# Defined as: Nominal price of the hotel (usually the average historical price)
nominalPrice = 89
# from the white paper, but perhaps needs to be adjusted in the future using the methods they explain
priceElasticity = 2
# this is an adjustable constant it depends how far forward we want to look into the future when optimizing the prices
# likely this will effect how long this will take to run, so it will be a balancing game with regards to accuracy vs runtime
numberOfDays = 30
def roomsAlocated(dateFirstNight, duration)
roomPriceSum = 0.0
for date in range(dateFirstNight, dateFirstNight+duration-1):
roomPriceSum += getPrice(date)
return demand(dateFirstNight, duration) * (roomPriceSum/(nominalPrice*duration))**priceElasticity
def roomsReserved(date):
# find all stays that contain this date, this
def maximizeRevenue(dateFirstNight):
# we are inverting the price sum which is to be maximized because mystic only does minimization
# and when you minimize the inverse you are maximizing!
return (sum([getPrice(date)*roomsReserved(date) for date in range(dateFirstNight, dateFirstNight+numberOfDays)]))**-1
def constraint(x): # Ol - totalNumberOfRoomsInHotel <= 0
return roomsReserved(date) - totalNumberOfRoomsInHotel
from mystic.penalty import quadratic_inequality
@quadratic_inequality(constraint, k=1e4)
def penalty(x):
return 0.0
from mystic.solvers import diffev2
from mystic.monitors import VerboseMonitor
mon = VerboseMonitor(10)
bounds = [0,1e4]*numberOfDays
result = diffev2(maximizeRevenue, x0=bounds, penalty=penalty, npop=10, gtol=200, disp=False, full_output=True, itermon=mon, maxiter=M*N*100)
任何熟悉mystic工作的人都可以就如何实现这一点给我一些建议吗?
答案 0 :(得分:3)
当您要求使用库mystic
时,在开始使用非线性优化时,您可能不需要这种细粒度控制。模块scipy
应该足够了。接下来是一个或多或少的完整解决方案,纠正我认为在原始白皮书中关于定价界限的错字:
import numpy as np
from scipy.optimize import minimize
P_nom = 89
P_max = None
price_elasticity = 2
number_of_days = 7
demand = lambda a, L: 1./L
total_rooms = [5]*number_of_days
def objective(P, *args):
return -np.dot(P, O(P, *args))
def worst_leftover(P, C, *args):
return min(np.subtract(C, O(P, *args)))
def X(P, a, L, d, e, P_nom):
return d(a, L)*(sum(P[a:a+L])/P_nom/L)**e
def d(a, L):
return 1.
def O_l(P, l, l_max, *args):
return sum([X(P, a, L, *args)
for a in xrange(0, l)
for L in xrange(l-a+1, l_max+1)])
def O(P, *args):
return [O_l(P, l, *args) for l in xrange(len(P))]
result = minimize(
objective,
[P_nom]*number_of_days,
args=(number_of_days-1, demand, price_elasticity, P_nom),
method='SLSQP',
bounds=[(0, P_max)]*number_of_days,
constraints={
'type': 'ineq',
'fun': worst_leftover,
'args': (total_rooms, number_of_days-1, demand, price_elasticity, P_nom)
},
tol=1e-1,
options={'maxiter': 10**3}
)
print result.x
值得一提的几点:
目标函数添加了减号,用于scipy的minimize()
例程,与原始白皮书中引用的最大化形成对比。这会导致result.fun
为负值,而非指示总收入。
公式似乎对参数有点敏感。最小化是正确的(至少,当它说它正确执行时它是正确的 - 检查result.success
),但如果输入离现实太远,那么你可能会发现价格远高于预期。您可能还想使用比以下示例中更多的天数。似乎有一些类似于白皮书引起的周期性影响。
我不是白皮书命名方案的粉丝,因为它与可读代码有关。我改变了一些东西,但是有些东西确实是残暴的,应该被替换,比如小写的l,很容易混淆1号。
我确实设定了界限,使价格为正而非负。根据您的专业知识,您应该验证这是正确的决定。
您可能更喜欢比我指定的更严格的公差。这在某种程度上取决于你想要的运行时间。随意使用tol
参数。此外,如果容差更严格,您可能会发现'maxiter'
参数中的options
必须增加minimize()
才能正确收敛。
我很确定total_rooms
应该是酒店尚未预订的房间数量,因为白皮书上的字母是l而不是像你在原始代码。我将其设置为用于测试目的的常量列表。
该方法必须是'SLSQP'来处理价格的界限和房间数量的界限。注意不要改变这一点。
计算O_l()
的方式效率低下。如果运行时成为问题,我将采取的第一步是确定如何缓存/记忆对X()
的调用。所有这些只是第一次传递,概念验证。它应该是合理的无错误和正确的,但它几乎直接从白皮书中提取,并且可以做一些重新分解。
Anywho,玩得开心,随时可以评论/ PM /等任何其他问题。
答案 1 :(得分:3)
抱歉,我迟到了回答这个问题,但我认为接受的答案并不是解决完整的问题,而是进一步解决问题。请注意,在局部最小化中,求解接近名义价格并不能提供最佳解决方案。
让我们首先构建一个hotel
类:
"""
This file is 'hotel.py'
"""
import math
class hotel(object):
def __init__(self, rooms, price_ave, price_elastic):
self.rooms = rooms
self.price_ave = price_ave
self.price_elastic = price_elastic
def profit(self, P):
# assert len(P) == len(self.rooms)
return sum(j * self._reserved(P, i) for i,j in enumerate(P))
def remaining(self, P): # >= 0
C = self.rooms
# assert len(P) == C
return [C[i] - self._reserved(P, i) for i,j in enumerate(P)]
def _reserved(self, P, day):
max_days = len(self.rooms)
As = range(0, day)
return sum(self._allocated(P, a, L) for a in As
for L in range(day-a+1, max_days+1))
def _allocated(self, P, a, L):
P_nom = self.price_ave
e = self.price_elastic
return math.ceil(self._demand(a, L)*(sum(P[a:a+L])/(P_nom*L))**e)
def _demand(self, a,L): #XXX: fictional non-constant demand function
return abs(1-a)/L + 2*(a**2)/L**2
以下是使用mystic
解决问题的一种方法:
"""
This file is 'local.py'
"""
n_days = 7
n_rooms = 50
P_nom = 85
P_bounds = 0,None
P_elastic = 2
import hotel
h = hotel.hotel([n_rooms]*n_days, P_nom, P_elastic)
def objective(price, hotel):
return -hotel.profit(price)
def constraint(price, hotel): # <= 0
return -min(hotel.remaining(price))
bounds = [P_bounds]*n_days
guess = [P_nom]*n_days
import mystic as my
@my.penalty.quadratic_inequality(constraint, kwds=dict(hotel=h))
def penalty(x):
return 0.0
# using a local optimizer, starting from the nominal price
solver = my.solvers.fmin
mon = my.monitors.VerboseMonitor(100)
kwds = dict(disp=True, full_output=True, itermon=mon,
args=(h,), xtol=1e-8, ftol=1e-8, maxfun=10000, maxiter=2000)
result = solver(objective, guess, bounds=bounds, penalty=penalty, **kwds)
print([round(i,2) for i in result[0]])
结果:
>$ python local.py
Generation 0 has Chi-Squared: -4930.000000
Generation 100 has Chi-Squared: -22353.444547
Generation 200 has Chi-Squared: -22410.402420
Generation 300 has Chi-Squared: -22411.780268
Generation 400 has Chi-Squared: -22413.908944
Generation 500 has Chi-Squared: -22477.869093
Generation 600 has Chi-Squared: -22480.144244
Generation 700 has Chi-Squared: -22480.280379
Generation 800 has Chi-Squared: -22485.563188
Generation 900 has Chi-Squared: -22485.564265
Generation 1000 has Chi-Squared: -22489.341602
Generation 1100 has Chi-Squared: -22489.345912
Generation 1200 has Chi-Squared: -22489.351219
Generation 1300 has Chi-Squared: -22491.994305
Generation 1400 has Chi-Squared: -22491.994518
Generation 1500 has Chi-Squared: -22492.061127
Generation 1600 has Chi-Squared: -22492.573672
Generation 1700 has Chi-Squared: -22492.573690
Generation 1800 has Chi-Squared: -22492.622064
Generation 1900 has Chi-Squared: -22492.622230
Optimization terminated successfully.
Current function value: -22492.622230
Iterations: 1926
Function evaluations: 3346
STOP("CandidateRelativeTolerance with {'xtol': 1e-08, 'ftol': 1e-08}")
[1.15, 20.42, 20.7, 248.1, 220.56, 41.4, 160.09]
这里再次使用全局优化器:
"""
This file is 'global.py'
"""
n_days = 7
n_rooms = 50
P_nom = 85
P_bounds = 0,None
P_elastic = 2
import hotel
h = hotel.hotel([n_rooms]*n_days, P_nom, P_elastic)
def objective(price, hotel):
return -hotel.profit(price)
def constraint(price, hotel): # <= 0
return -min(hotel.remaining(price))
bounds = [P_bounds]*n_days
guess = [P_nom]*n_days
import mystic as my
@my.penalty.quadratic_inequality(constraint, kwds=dict(hotel=h))
def penalty(x):
return 0.0
# try again using a global optimizer
solver = my.solvers.diffev
mon = my.monitors.VerboseMonitor(100)
kwds = dict(disp=True, full_output=True, itermon=mon, npop=40,
args=(h,), gtol=250, ftol=1e-8, maxfun=30000, maxiter=2000)
result = solver(objective, bounds, bounds=bounds, penalty=penalty, **kwds)
print([round(i,2) for i in result[0]])
结果:
>$ python global.py
Generation 0 has Chi-Squared: 3684702.124765
Generation 100 has Chi-Squared: -36493.709890
Generation 200 has Chi-Squared: -36650.498677
Generation 300 has Chi-Squared: -36651.722841
Generation 400 has Chi-Squared: -36651.733274
Generation 500 has Chi-Squared: -36651.733322
Generation 600 has Chi-Squared: -36651.733361
Generation 700 has Chi-Squared: -36651.733361
Generation 800 has Chi-Squared: -36651.733361
STOP("ChangeOverGeneration with {'tolerance': 1e-08, 'generations': 250}")
Optimization terminated successfully.
Current function value: -36651.733361
Iterations: 896
Function evaluations: 24237
[861.07, 893.88, 398.68, 471.4, 9.44, 0.0, 244.67]
我认为为了产生更合理的定价,我会将P_bounds
值更改为更合理的值。