我试图证明以下定理:
Theorem Zeq_to_eq: forall (a b : Z), Zneq_bool a b = true -> a <> b.
Proof.
intros a b.
intros neq.
rewrite Zeq_bool_neq.
Admitted.
我收到以下错误:
Error:
Tactic failure: setoid rewrite failed: Unable to satisfy the following constraints:
UNDEFINED EVARS:
?X22==[a b neq |- Relation_Definitions.relation Prop] (internal placeholder) {?r}
?X23==[a b neq |- Relation_Definitions.relation Z] (internal placeholder) {?r0}
?X24==[a b neq (do_subrelation:=Morphisms.do_subrelation)
|- Morphisms.Proper
(Morphisms.respectful (fun x y : Z => x <> y)
(Morphisms.respectful ?X23@{__:=a; __:=b; __:=neq}
?X22@{__:=a; __:=b; __:=neq})) eq] (internal placeholder) {?p}
?X25==[a b neq |- Morphisms.ProperProxy ?X23@{__:=a; __:=b; __:=neq} b]
(internal placeholder) {?p0}
?X26==[a b neq (do_subrelation:=Morphisms.do_subrelation)
|- Morphisms.Proper
(Morphisms.respectful ?X22@{__:=a; __:=b; __:=neq}
(Basics.flip Basics.impl)) not] (internal placeholder) {?p1}
我认为某些“深层”出错了,但我不知道如何调试它。帮助将不胜感激。
答案 0 :(得分:1)
Check Zeq_bool_neq.
(*
Zeq_bool_neq
: forall x y : Z, Zeq_bool x y = false -> x <> y
*)
一般情况下,您可以apply
表达上述含义,如果您有逻辑等效(rewrite
),则可以<->
,您可以这样找到:
Search (Zeq_bool) (_ <-> _).
(* Zeq_is_eq_bool: forall x y : Z, x = y <-> Zeq_bool x y = true *)
以下是我们如何使用它:
From Coq Require Import Bool ZArith.
Open Scope Z.
Lemma Zneq_bool_Zeq_bool (a b : Z) : Zneq_bool a b = negb (Zeq_bool a b).
Proof. now unfold Zeq_bool, Zneq_bool; destruct (a ?= b). Qed.
Theorem Zneq_to_neq (a b : Z) : Zneq_bool a b = true -> a <> b.
Proof.
rewrite Zeq_is_eq_bool,Zneq_bool_Zeq_bool, not_true_iff_false, negb_true_iff.
trivial.
Qed.
顺便提一下,Zeq_bool
/ Zneq_bool
函数已弃用(请参阅Coq.ZArith.Zbool
文件中的评论):
我们现在提供一个不引用
Z.eqb
的直接Z.compare
。保留旧Zeq_bool
以保持兼容性。